Catalogue Entry: NATP00354
Collations for the History of the Infinitesimal Analysis
[1] NB {m} serierum in Epistola Newtoni data 24 Octob. 1676, ubi dicit se ejusmodi series per methodum fluxionum inveni sse.
Id est seribus in finitas æquationes (eo modo fiat) migrantibus Exempla habes taliu[2] NB b Calculus ita se habet. Sint o et momenta ipsorum x et z ut supra et erit et et deletis æqualibus reliquisque per o divisus fit & deletis in finite parvis prodit et . Et similibus computis ex data relatione inter abscissam & aream curvæ cujuscunque ad 1 applicatam, invenietur ordinata, id est ex data quavis æquatione fluentes quantitates involvente invenientur fluxiones.
[3] NB. Hæcce transmutationum methodus per methodum differentialem jam multum abbreviari et ellegantior reddi potest. Namque habilis , ex æquali{illeg}nt {illeg}ore per methodum illam fit . Et ob æquales areas Q1B1DC & C1N1P3P est . seke . . Mirum est quod Leibnitius methodum transmutationum per ambages hactenus tractavit si forte methodum differentialem jam invereat.
[4] NB Mr Leibnitz therefore had not as yet begun to apply differential Equations to inverse Problems of tangents.. But Mr Newton in his answer represents that he had two methods of solving these Problems by the fluxional Equations.
[5] 1
[6] 2
[7] 5
[8] 4
[9] 5