<45r>

The present state of the Coynage in relation to the fineness of the moneys.

Assaying & refining are operations of the same kind. The Assayer refines a small piece of any mass of gold or silver & by the decrease of its weight makes his report: & if the {sic} be no decrease of its weight makes his



I Delivered to my Lord Bradford 300 Medals of gold, for ye Coronation And To ye Speaker of the commons 518 \Medals/ for the members \& Officers'/ {illeg} of that house To {illeg} \the Mr of ye {Cer.} weightier/ |And| 40 Medals \more were made/ for forreign ministers. These \last/ were weightier then the rest, & may now contein an ounce of gold in each Medal. There are now 45 members more in ye house of Commons: in all 563. I desire that the numbers to be delivered to ye Coffers & that for for forreign ministers \upone each account/ may be settled \by a signe manual/, & that a minute mab|y| be made for allowing 4li 9s pr ounce for {f} the Gold & 3s a piece for the wast & workmanship upon bringing in a Bill.

Qvq=PvG,DCqPCq=PvG,uVvG=Pv,uV. PQq=Qvq+Pvq+Pv,uV=Pvq+2Pv,uV=Pv,Pv+2uV./ Qvq=Pv,uV. QPq=Qvq+Pvq+uvP=Pv,uV+Pvq+uvP=Pv,uV+Pv+uv=Pv,PV

Adde uPv et habebitur QPq[=Pu,uV+Pu,Pv=Pu,PV]=Pv in uV Pu+uV=VPv – – – – – et PV (ex natura sectionum conicarum) ejusdem æqualis erit 2DCqPC.

Adde uPv untrin et habebitur QP quad æquale quadratum chordæ arcus PQ prodibit æquale rectangulo VPv

Circulus curvam contingit concentrice

\In Curvis omnibus lineæ {sijus}vis ca{illeg}/ Si chorda arcus cuj{us} a \ab ejusdem/ sagitta {illeg}|pr|oducta secetur &

\Proposita/ In Curvis omnibus Si cho{rda} arcus segmentis sagittæ æquetur rectangulo chor sub segmentis chordæ & interea chorda \arcus/ minuatur & evanescat: Circulus qui a{illeg} qu{illeg} arcum {a} evanescentem tangit & transit per terminos sagittæ ejusdem erit curvaturæ Cum {eruit} Curva in puncto contactus {illeg} \& arcum evanescentem tangit e/ Curvam tanget concentrice.

Curvas se mutuo tangere concentrice dico quæ sunt ejusdem curvaturæ {illeg}|ad| puncto|ū| contractus & commune habent centrum curvaturæ \ibi/ in easdem partes incurvantur, commune habentes centrum curvaturæ.

Lemm. XII.

Proposita quacun linea curva, si chorda \& sagita|t|a/ cujusvis arcus ejus \hujus Curvæ/ \duca\n/tur/ & ejusdem arcus sagitta \quævis/ producta se mutuo se cent et sagitta producta chordam secet & eous producatur ut rectangulum sub segmentis sagittæ æquale sit rectangulo sub segmentis chordæ, et \arcus ille/ interea minuatur in infinitum et evanescat: circulus qui semper transit per terminos chordæ et sagittæ, tanget arcum evanescentem concentrice.

Curvas se mutuo tangere concentrice dico, quæ sunt eji{illeg} {illeg} ad punctum contactus æqualiter et in easdem partes æqualiter incurvantur, \id æqualiter,/ commune habentes centrum curvaturæ. Circulus autem qui transit per terminos chordæ et terminum alterutrum \alterutrum/ sagittæ \in curva situm/, transibit per terminum alterum sagittæ per Prop XXXV Lib III Elem. Et curva quæ transit per terminos sagittæ & chordæ et t{illeg} ac transeundo per tria Curvæ puncta eandem obtinebit curvaturam ubi puncta illa coeunt.

23040 2880 028,8 2553.4 4.9 .9 25557.4

2304.12.6 288.19.0 3.11.0

2304.13.1614 3.13.1114 288.19.1214 28.16.1114 5.1914 2596.02.1814 28.16.1114 2567.15.1914

<45v>

Pro varietate \diversitate/ locorum ac temporum varia{r}{illeg}{r} \diversa est/ rerum Natura, et diversitas illa non ex necessitate metaphysica, quæ uti eadem est semper et ubi non sed aliunde quam ex voluntate \sola/ entis necessario existentis oriri potuit. Sola voluntas principium fons et origo est|s||e| \potuit/ motus et mutationis \&/ omnis & [amnis \rerum/ diversitatis quæ in mundo accursit] mutationis ac diversitatis rerum, ideo \Deum/ veteres Deum {illeg}|υ|τοκίνητον dixerunt.

Αὐτοκίνητο{ς}|ν| et Deus \Agens Principium primum/, quod de fato et Natura dici not|n| potest. et ex voluntate sola Entis necessario existentis Pro diversitate locorum ac temporum diversa est rerum \fini{illeg}tarum/ natura, et diversitas illa non ex necessitate metaphysica, quæ uti eadem est semper et ubi, sed ex voluntate sola Entis intelligentis et necessario existentis oriri potuit. Et hæc de Deo, de quo &c

Agens primum \ut sit primum,/ ἀυτοκίνητον est|s|e debet, ide\o/inter facultate \esse debet et propterea potestate/ volendi præditum est \est:/ quode de Fato et Natura dici non potest. Pro diversitate locorum ac temporū diversa est rerum \omnium/ finitarum natura, et diversitas illa non ex necessitate Metaphysica (quæ uti eadem est semper et ubi) sed ex volutate {sic} sola Entis intelligentis et necessario existentis oriri potuit, \voluntas antea et h{illeg}{} /{entis} infinit{i}\ voluntas dominium inducit summum inducit./. Et hæc de Deo de quo uti ex phæmenis {sic} disputare, ad Philosophiam experimentalem pertinet.

Apud Ægyptios symbolum Dei erat serpens per mundum extensus.

Deus creat omnia componendo, generat intelligentes vivificando

|{illeg}dist| circum terminum suum communem, æquq|u|ali motu angulari propterea quod in directum semper jacent et

Generare dicitus fili{illeg}u|os|s in sui similitudine quando vivere facit & intelligere Creavit hominem \quando formavit/ ex terra & generavit in filium sibi similem quando vivere fet|c|it Gen 2|1|.27 & 2.7. Cal. 1. 15, 18. Rev. 1.5

ALB=LIqASq. SI2×LS2AS232SI×LA3SI2×LS2AS232SI×LB3=SIq3SI in LS2AS2×LB32LA32LA32×LB32 SI3232 in LBLA12LALB12 seu in LB12LA32LA,LB. LI=AS22SI

6SIq,SL6SIq,SI4SI33SI6SIq,SI4SI3=6SIq,LI4SI33LI

1x3. 12xx12xx. 12LA212LB2. x32. 2x12. SAqSI=PS. SAqSIqSI=PI. SAq+SIq2SI=LS SAq+SIq±ASI22SI=LBLA{illeg}. BIq2SI=LB. AIq2SI=LA. 8SIcAIc8SIcBIc=8SIc in BIcAIcAIcBIc SAqSIq2SI=LI. ±AS3+3AS2,SI±3AS,SI2+SI2 +3+. BIcAI3AIc,BIc=6ASq+SIq2 in SI.HI6. HI6=AS63AS4SI2+3AS2SI4SI6=8LI3SIc. SIq,ALB32SI×8SIc in 6ASq+SIq2×SI8LIc,SIc SIc,ALB×ASq+2SIq2LIc,SIc×SI. SI,ALB2LIc×ASq+13ISq=SI,LSqSI,SAq2LIc×ASq+13ISq 3AS2,SI6LI×ALBLIq+SI36SI×ALBLIq.

LA=p. LB=q. q23p23p23q23. AS=r. SI=s. LI=t. AI=v. BI=w. HI2=2LISI=2st.

ss,ALB32s12 in 1p321q32. p=vv2s. q=ww2s. s32,ALB32 in a32p32p32q32 seu in w32s2sw32s2sv3w38s3 seu in 8s3w38s3v32s2s×v3w3 seu in {illeg} 8s3×w3w3v3w3, seu in 8s3×6rrs+2s38s3t3 w3v3=r3+3rrs+3rss+s3r3+3rrs3rss+s3=6rrs+2s3. 2s×ss×3rr+ss2s3t3=2s in 3rr+ss2st3=3rr+s3t32s. s32,ALB32 in 3rr+sst32s=s,ALB in 3rr+ss6t3ALB in 3rr=s3+3rrs6t3ALB ALB=LSqSAq=LIq+2LIq+SIqASq{illeg}. 3

s32,pq32in q32p32pqpq=s3232pq in q32p32=s32×2s32×vw×w32s2sv32s2s=s6vw in w3v3 seu in =16s×w3v3vw=16s in 6rrs+2s32st=3rrs6t+s36t/ scribendo 2st pro pq=ALB=2SILq4SIq=HIqq4SIq=ILq.

© 2025 The Newton Project

Professor Rob Iliffe
Director, AHRC Newton Papers Project

Scott Mandelbrote,
Fellow & Perne librarian, Peterhouse, Cambridge

Faculty of History, George Street, Oxford, OX1 2RL - newtonproject@history.ox.ac.uk

Privacy Statement

  • University of Oxford
  • Arts and Humanities Research Council
  • JISC