Historia methodi infinitesimalis
It is represented that in the third fourth & fift Centuries some in Afric took the water spirit & blood to represent the father {illeg}|W|or{t}|d| & holy spirit, & that Tertullian probably introdued {sic} this interpretation, & might have it from ye School of the Montanists, & that
The{illeg} testimony of the three in heaven (1 Iohn 5. 7) is wanting in \all/ the Greek Manuscripts now extant \hitherto coll hitherto examined/ & in [the Syriac & Ethiopic, versions \&/ & Coptic, Arabic \&/ Armenian & in the & Coptic versions {illeg}s] all the old Versions now extant in MSS except the vulgar Latin made by Ierome. It was originally wanting in this Version \also/ for it is wanting in most of the oldest MSS of this Version but is got into almost all those wch have been maded since the twelf Century.
pag 191 lin 19. – quence not before the yeare 1677 or not above a month or two before.
Ib. lin 23. – year 1670, & Mr Ia. Gregory in a letter to Mr Collins dated 5 Sept. 1670 was|ro|te thus. Barrovij Lectiones summa cum voluptate legi & attentione legi pers|l|egi; at omnes qui unquam hisce de rebus scripserunt infinito intervallo superasse comperio. Ex ejusdem [Barrovij] methodis Tangentes ducendi cum quibusdam e proprij collatis inveni Methodum generalem & Geometricam ducendi Tangentes ad omnes Curvas sine calculo. [A copy of this Letter was sent to Mr Tschurnhause in May 1675 & \another copy thereof was sent/ to Mr Tsch Leibnitz in Iune 1676 amongst in the collection of Mr Gregorys papers Letters above mentioned]. Mr Newton sent in my letter of dated Decem 10 1672 \having n|N|otice of the method & of that of Slusius, being sent to Mr Newton he/ communicated his method of Tangents \in a Letter/ to Mr Collins \dated Decem 10 1672/ saying that he took it to be the same with that of Slusius & Gregory, & adde after he had explained his method & illustrated his m it by an example he added: Hoc est unum particulare — — —
Pag 192. lin 7. A Copy|ie|s of Mr Gregories Letter of Sept 5. 1670 & of Mr Newtons of 10 Decem 1672 were {illeg}|s|ent to Mr Oldenb Leibnitz by Mr Oldenburg — — — — of Iune 13 1676; & Mr Leibnitz in October following next \be{illeg} coming to London met there/ with the math Lectures of Dr Barrow & with Mr Newtō Letter of 24 Octob 1676, & |Mr Newton having in his Letter & in that of 10 Decem. 1672 described that he had a very general Analysis — — — Mr Leibnitz in his returning| in his returning home from London through Holland was meditating upon the improvement of the method of Slusius. For in a Letter to Mr Oldenburg — —
Pag. 193 l. 7. Mr Newton in his Letter dated Octob. 24. 1676.
Pag. 194. l 6. Mr Leibnitz saw this Letter before he lefte London but not having {illeg}|tim|e to {illeg} get it copied a copy thereof was sent to him so soon as Mr Oldenburg had notice that he was arrived at Hannover: & Mr Leibnitz soon after vizt in a Letter dated Iune 21, 1677
Pag. 196 lin. ult. — {ry} of his general method, & Mr Gregory that the method of Barrow might be improved t|s|o as to draw {sh}|Ta|ngents without calculation, that is, so as to give the method of Tangents \Rule/ of Slusius.
Pag 191 {illeg}|li|n. 22|1| & 22. DrBarrow published his Method of Tangents in the year 1670. & Mr Iames Gregory in a Letter to Mr Collins dated 5 Sept 1670 wrote that he had improved the method of Barrow so as to be able to draw Tangents to all Curves without calculation. Mr Collins in autum 1672 gave notice of this method to Mr Newton & that Mr Slusius had offered to offere writ to Mr Oldenburg about such another Method. Mr Newton in a letter dated 10 Decem 1672 wrote back \to Mr Collins/ that he beleived took the methods of Gregory & Slusius to be the same with his own & after he had described his own Method & illustrated it with an example he added: Hoc est unum particulare vel Corollarium potius methodi generalis —
pag. 198. lin. 10. Occasio fuit hæc. Cum D. Leibnitius \Viennæ agens/ ad amicum scrib{illeg}|psit|t probabile esse se cum quod cum probabile esset {Eq} literas aliquas {illeg} archivis nondum publicatas inter eas Oldenburgi et Collinij latere, ipse optaret ut hæ sibi a Regia Societate mitterentur. Se enim cum Hanoveram rediret posse Cis|o|mmercium novum Epistolicum \etiam/ in lucem emittere & velle publicare non minus litteras quæ contra ipsum allegari possent quam illas quæ ipsi faverent. Newtonus autem respondit, se non edidisse Commercium Epistolicum |D| Leibnitium non admitte debere testem in propria an se non edidisse Commercium Epistolicum, ne \ne dum/ literas {illeg} quasdam quas ipse habuit in propria custodia \archivis suis habuit/ in lucem prod|t|u{illeg}|l|isse ut in Commercio edito pulicarentur, ne se{u} testem faceret \n|s|e s{illeg}p{illeg} enim seipsum/ in propria causa \testem {illeg} faceret, nolluisse &/ sunt D. Leibnitium {illeg} in propria causa testem admitti \non/ debere. [Siquid in Archivis R. Societatis adhuc lateret quod luce dignum, hoc imprimi posse in Transactionibus Philosophicis] Et subinde in hujus rei testimonium is Epistolas duas protulit, utram ad seipsum scriptam, unam a D. Wallisio Apr. 10 1695, alteram a D. Leibnitio Martij 167|9|3, quæ postquam \ab ijs/ {illeg}ot{æ} sunt {illeg} examinatæ sunt ab ijs qui scrip \& pro genuinis agnitæ ab ijs sunt ab ijs qui/ utrius autographa ex scribendi formulis noverant, et pro genuinis agnitæ, lectæ sunt coram Societate Regia et subinde in {illeg} Societatis Archivis repositæ. Addidit re{illeg} insuper Newtonus quod siquid in Archivis R. Societatis adhuc inveniri posset luce dignum, hoc in Transactionibus Philosophis|c|is imprimi posset, & siqu{illeg} Epistolæ quas Et siquid amplius D. Leibnius {sic} imprimi vellet vel ex suis archivis haberet quod imprimi vellet, deberent autographa prius examinari. Et examinari quidem possent coram Regia Societate {illeg} et subinde vel in Phil. Transactionibus vel alias imprimi si Leibnitio placeret Sed nihil missum est ut examinat|r|etur, nihil amplius in archivis R. Societatis \nondum editum/ inventum \est/ ad hanc controversiam spectans, quod luce qu{illeg} \quod vel pro Leibnitio vel contra Newtonum faceret./
Pag 207 lin penult. After 393 & 396 add. And in the year 391 Dr Halley & Mr Ralphson borrowed this Book in MS \of Quadraturs at Cambridge/ & carried it with them to London as Dr Halley hath declared before the R. Society & Mr Ralphson has affirmed in his Treatise of And therefore th{illeg}|is| Book was in MS in those days & Mr Newton had not then forgotten {illeg} the method of second fluxions.
And Mr Leibnitz himself Ego vero libentur,, saith he, ingentia Newtoni merita oblatis . . . . . . . satis intellexi. mihi mature transmisit. And a little after he added Quam [meth{o}dum] ante Dominum Newtonum et me - - - - - Compounding Hitherto therefore Hitherto there Here Mr Leibnitz allowed that \before he published his meth{ors}/ he understood by his Lette Mr Newtons Letter \of 1676/ that he \Mr Newton/ could draw tangents without taking away surds & by his Principia \publi published 1687/ that he had gone much further in this Ans method. And Mr Newton had told him in those Letters that his methods \Analysis/ extended th to ye quadrature of Curves & \to/ inverse Problemes of tangents & others more difficult: And Mr Newton \& {illeg} that he had the method five years before or above &/ had demonstrated the elements of his calculus in the Principia, D{illeg} & described & that he had those this co He had to And before Mr Newto he began to lay any claim to the Method Mr Newton had told him that had wrote a tract concerning that meth it five years before the writing of those Letters. {illeg} And a copy of a Letter dated 10 Decem 1672 concerning the method was sent him by Mr Oldenburg as was said above. Hitherto therefore Mr Leibnitz did not pretend to be the first inventor, but only excused himself for not having made a fuller acknowledgmt of what Mr Newton had done. He did not begin to put in a claim of first inventor till after the death of Dr Wallis. the last
The occasion of inserting this intimation Dr Wallis signified also to Mr Leibnitz in his a Letter dated Decem 1. 1696 \& published by Dr {illeg} in the third Volum of the Doctors Works./. {sic} Cum Præfationis (præfigendæ) postremum folium erat sub prælo ejus typos jam posuerant Typothetæ; me monuit amicus quidam (harum rerum grarus) qui peregræ fuerant, tum talem methodum in Belgio prædicari tum illam cum Newtoni methodo fluxionum quasi coincidere. Quod fecit ut (translatis typis jam positis) id monitum in \ter/ seruerim
p. 199 And in a Letter to Mr Leibnitz dated 1 Decem. 1696, he wrote thus gave this Account of it Cum præfationis – – – – intersererem. And in a Letter to Mr Newton dated Apr 10. 1695, he wrote thus about it. I wish
p. 201 And in his Letter of Aug. 27 1676 he denyed \that such problemes/ what Mr Newton had affirmed concerning the reduction of Problemes to such æquations, & therefore was then an absolute stranger to th{illeg} method equations this method
p. 198. l. 14. And again in his answer to Mr Fatio printed in the Acta Lipsi Eruditorum of May 169 1700 pag 203 lin 21 he allowed \acknowledged/ the same thing.
p. 198 l 31 Method, & illustrated it with examples of drawing tangents & squaring curves, that it could not be difficult.
p. 200 l 27 — so early; did not so much as affirm that he had it so early|ie||r| tho Dr Wallis had {illeg}d him {illeg} publis affirmed that Mr Newton had it ten years before that time or above; allowed
p. 201. l. 13. [And in making this {h}|D|efence he pretended that \in the year 1684/ when he published his method of tangents he knew {illeg} nothing more of Mr] & published it without knowing what Mr Newton had done before him. {illeg} And in making this Defense
p. 203 \l. 5./ – Novices, Mr Leibnitz had prepossessed his country men that he was the first inventor
p. 202 l. 2|3|. represented not only that Mr Leibnitz was the first in fluxions for differences & by consequence taken his method from that of Mr Leibnitz. And this Hitherto he had upon several occasions acknowledged that Mr Newton had found the Method apart. N{illeg}
Mr Leibnitz had hitherto allowed \acknowledged/ upon several occasions that Mr Newton had invented the Method apart
\p. 202 l. 17/ complaining that in these words that what Mr Keil had written amounted to a calumny & moved that ye R. S. &c l 21 leave to do so, being now sensible that
allowed that Mr Newton had found the method apart & did not deny – – – then that he also had found the method apart
& when he published it knew little or nothing of what Mr Newton had done. And in making this d|D|efen s{,}|ce| he added —
In calling it injustice to put {illeg} question his candour he
He was bound in justic candour & justice to make good his accusation against Mr Keill that it might not go for a calumny.
He knew that no man can be a witness in his own cause & yet he {a}lls calls it injustice to question his candor. He knew that the R. Society could not in justice condemn Mr Keil without some proof against him & yet he insists an excuses himself fr insists only upon his own candour. He tells & calls it injustice to expect that he should plead defend it. He tells the R. Society that his friends know how he came by the method, but he should have told the R. Society how he came by it. He saith saith that the Editors of the Acta Lipsiensia had given every man his due & in the next words that he & his friends wer had some times shewn that they were willing to beleive that Mr Newton found the method apart. & yet that Mr Leibnits had but without depriving Mr Leibnitz of his right to the invention. He cites the opinion of Hugenius in his behalf {illeg} tho Hugenius knew never had an opportunity to examin the matter He saith that
He had seen three of Mr Newtons
Mr Newton had given his opinion in this matter in his Analys Letters of d|D|ecem. 10 1672 Iune 13 1676 & Octob 24 1676 copies of all wch had been sent to Mr Leibnitz. {illeg} And thereupon therefore Mr Leibnitz gave him seven years time to print his method. & refused to tell how he came by the method
For Sr Isaac Newton
Motum Cometarum Leibnitius non attigit, Planetæ et Cometæ ijsdem legibus revolvuntur apud Newtonum. Vortices ali\cu/bi harmonice alibi non harmonice moveri Leibnitius pro lubitu finxit: harmonicæ circulationi vortices satellitum Saturni Iovis at|c| Terræ plane obstant: Motibus Cometarum Vortices Leibnitianæ non favent. Motum harmonicum Planetarum Leibnitius non probavit sed in Artic Tentaminis Artic 6 assumpsit: Newtonus motum harmonicum corporum omnium in centrum immotum attractorum demonstravit. Motum circulationis et motum paracentricum Leibnitius nunc a diversis causis nunc ab eadem deducit: Newtonus utrum ab eadem causa semper deducit. Vim centrifugam sinui verso anguli circulationis proportionalem esse Leibnitius {illeg}|i|n T{a}|e|ntaminis Artic 11 assumpsit contra veritatem; et in motum paracentricum Planetarum a differentia virium centrifugarum & centripetarum (quæ nulla est) oriri finxit inde deduxit vim centrifugam mobilis harmonice circulantis esse in ratione radiorum reciproca triplicata (Artic 12) newtonus demonstravit hanc vim mobilis in Ellipsi circa focum harmonice circulantis esse in ratione radiorum reciproca duplicata. \Leibnitius/ Motum paracentricum Planetarum a differentia virium centrifugarum et centripetarum oriri finxit (Artic 15, 21, 25) Newtono differentia illa nulla est. Ex errantibus Articulis 12 et 15 Leibnitius deduxit Artic 19: et Proposiones {sic} Mathematicæ sic inveniri non solent.
Dicunt aliqui D. Leibnitium \in Tentamine suo/ Propopsitiones 19 et 20 Tentamini a falsis Propositionibus falsis \non veris/ /falsis\ (nempe 14, 12 & 15) \per calculū s{illeg}/ deduxisse \su{illeg}|u|m/ {illeg} [C|A|t per calculum errantem Propositiones Mathematicæ inve{nr}i non solent] Ac talis calculus ad Propositiones \quidem/ prius invente|a|s aptam potuit non autem invenotrem constituere.
Dicunt aliqui quasdam \falsas est|s|e/ Tentaminis Propositiones quasdam, nempe 11, 13 & 15, & D. Leibnitium ab his per calculus|m| suum deduxisse Propositiones 19 et 20 \ejusdem Tentaminis/. Talis autem calculus ad Propositiones prius inventas quidem inventas aptari quidem potuit, non autem inventorem constituere.
Gravitas in corpore cadente et sp{a} tempore spatium FG generante cadendo describente generat velocitatem qua duplum illud spatium eodem tempore describi posset id est velocitatem seu ; at in corpore &c {illeg}= . Resistentia ad Gravitatem ut ad 1, seu 3a ad 2n. Densitas Medij ut in id est {illeg} ut a. Et velocitas ut L {illeg} {illeg} seu id est ut .
And by those Letters & Papers it appeared to the Committee that Mr Newton had the Method in \or before/ the year 1669 & it did not appear to them that Mr Leibnitz had it before the year 1677.
Mr Leibnitz {illeg} \began/ his Second Letter to Dr Sloan dated 29 Decem. 1711, nor|wth| these words. Quæ D. Iohannes Keillius nuper ad te scripsit, candorem meum apertius quam ante oppugnant: quem ut ego hac ætate cum h post tot documenta vitæ, Apologia defendam & cum homine docto, sed novo, & parum perito rerum anteactarum cognitore, nec mandatum habente ab eo cujus interest, tanquam pro Tribunali litigem, nemo prudens æquus probabit. That is That is, he tells the Society that they are unjust unless they a ⨳ ⨳ Thus he declined \to/ maki|e|ng good his accusation against Mr Keil as he was bound to do for avoyding the censure of calumny & told the R. Society that they would be unjust if they should question his candor, that is, if they should not allow him to be a witness in his own cause contrary to the laws all nations, & refused to contend with any body but Mr Newton or those imployed by him, justifying the Acta Lipsiensia against him in the same letter, & pressing him to declare his mind, that is, to retract what he had published in the {A} P{illeg} Introduction to his Principles & \to/ submit to the jus|d|gment of the Editors of those Acta. But those editors have sometimes imployed the pen of Mr Leibnitz \himself/, & the Motto of th sometimes the pens of inferior men & the Motto of the R. Society is NVLLIVS IN VERBA, \of other men of less note/ & by the law of all nations no man can be either Iudge or Witness in his own cause, & by the law of all n the Motto of the R. Society is NVLLIVS IN VERBA|.|, & th{illeg}i{illeg} It lies upon Mr Leibnitz \as well as upon Mr Keill/ to prove{illeg} his assertions. It lies upon him &c Thus he de{t}|c|lined making good his charge accusation against Mr Keil |as he was bound to do for avoyding ye censure of calumny &| refused to contend with any body but Mr Newton or those imployed by him |pressing Mr Newton in the same Letter to give his {illeg} declare his opinion mind & justifying the Acta Lipsiensia against him, &|, & tells the R. Society that they are unjust if they question his candor, that is, if they do not allow him to be a witness in his own cause contrary to the la{w o}f all nations. But the Motto of the R. Society is NVLLIVS IN VERBA. It lies upon him \Mr Leibnitz/ to prove that he had the Differential Method \jam a multo tempore/ before the year 1677. It lies upon him to prove that he had the series of Gregory before he received it from Mr Oldenburg A.C. 1675 \at wch time h{illeg}|e| did not {illeg} know it to be his own/ & even before Gregory sent it to Collins A.C. 1671. He has affirmed that (in his Letters of 28 Decem 1675 & 27 Aug. 1676) that the|i|s series for finding the Arc by the Tangent was communicated by him to his friends at Paris in 1673 & was the series whereof he had sometimes writ to Mr Oldenburg, {illeg} It lies vizt in {y} ye year 1674 \before December 1675 vizt in Iuly & October A.C 1674/ It lies upon him to prove that the series wch he then wrote of to Mr Oldenburg was this series & not the series for finding the Arc by the sine. In his Letter of October 1674 he has affirmed that he had a method of finding the Arc by the sine & that the same me \in a series of rational numbers/ whether the proportion of the Arc to ye whole circumference In his Letter of 21 Iune 1677 he wrote was known or not, & that ye In his Letter of same method gave him \a series for/ the whole circumference in a series. H{illeg} \&/ in his Letter of 12 May 1676 he desired Mr Oldenburg to procure from Mr Collins the method of finding this Series: it lies upon him to prove that he had such a \the/ method in \or before/ ye year 1674. At his request Mr Newton \in his Letter of 13 {Iu}/ sent him his method of finding that & such like series direct & inverse |& illustrated his method wth examples of series| & upon the receipt of that Letter Mr Newton Leibnitz pretended that he had found some of those series before it It lies upon him to prove that he had a method of finding the series for the Arc by the Sine in the year 1674. It lies upon him to prove that before the receipt of Mr Newtons Letter of 13 Iune 166|7|6 he had some of the series sent him therein with the method of finding them. It lies upon him to prove that he had found out one of Mr Newtons inverse methods of series so early as to have forgot it before ye year 1676. {illeg} He pretends to \be the inventor of/ the method of series by assuming the terms thereof gradually & determining them gradually by the conditions of the Problem: it lies upon him to prove that he had this method before Mr Newton sent it to him in cyphers in his Letter of Octob. 24 1676. A year or two after Mr {illeg} Newton had published his Principia Philosophiæ Mr Leibnitz published three papers relating to to {sic} the principal Propositions in that Book pretending that he had found them before the publishing of that book: it lies upon him to prove that he had found them before. He pretended that the Propositions concerning the motion of Bodies in resisting Mediums were for ye most part found out by him twelve years before while he was yet at Paris, that is, before he had the Differential method: it lies upon him to prove that it. It lies upon him also to prove that by a{illeg}|n| fals \erroneous/ Demonstration he could find out the Proposition that a Body revolving in an Ellipsis & with with a radius \drawn to the lower focus/ describing equal areas in equal times, is attracted towards that focus by a force wch is reciprocally as the square of that radius. ♀ For \{illeg}/ making himself a coinventor of the method of series He has laid claim to it by a Proposition for transmuting \any one/ figures into \{illeg}|a|n/others equal to it{illeg}. It lies upon him to prove that this method \of Series/ is either general or useful or that any thing can be done by it which cannot be better done without it or that he had it before ye year 1675 or that he has done any thing of moment by it wch was not done before by other æquations where the indices of dignities were fract or surd: Mr Leibnitz in his reply proposed æquations where the indices of dignities were indeterminate & calling these æquations exponential, & \{illeg}/ recons these|n| equations the most perfect \of all others/. It lies upon him to shew that \any/ use that {in q} hath been \made or can/ or may be made of them. He has represented that Mr Newton \For making Mr Newtons method of fluxions his own/ He has represented that Mr Newton at first used the letter o for the \given/ increment of x in the vulgar manner for the unifo {ever} given \constant given/ increment of x, wch destroys the advantages of the differential method, but at length \after the writing of his Principles/ changed o into substituting for dx: & thereby found the differential of it lies upon him to prove that he ever Mr Newton ever changed o into or doth not use the letter o to this day. |or used for dx or left off the use of the letter o.|
Mr Newton used the letters o in his book of Quadratures {illeg} Analysis \& in his Principia Philosophiæ/ & in his book of Quadratures & still uses it in the very same sense \as at first/. He In his book of Quadratures he used it in conjunction with the {illeg} symbol & therefore did not use \substitute/ the one for the other \use that symbol in ints room./ These symbols \o & / are put for things of a different kind. [The letter o is p signifies a moment of time or a {illeg} small part of any quantity by wch time is represented. The marks , , are not parts generated but velo fluxions or velocities of increase] as has been explained] The symbo \The one is a moment the other a fluxion or velocity. The one i as has been explained above./ When the letter x is put for a quantity wch flows uniformly, the let symbol is an unit & the letter o a moment {illeg}|&| \the symbols/ & dx agre \signify/ the same moment; but without the coefficient o either exprest or understoot|d| to make it infinitely little is|d|oth not signify a moment. Prickt letters {illeg}|n|ever signify moments, unless when they are multiplied by the letter o moment o either exprest or understood \to make them infinitely little/, & then the rectangles are put for moments.
[1]Mr Newton doth not place his method in forms of symbols nor confine himself to any particular sort of symbols for \fluents or/ fluxions. Where he puts the Areas of Curves for fluents he puts the ordinates for fluxions & denotes the fluxions by the symbols of the Ordinates. When he puts lines for fluents, he puts any symbols for the velocities of the points wch describe the lines, that is for the first fluxions, & any other symbols for the increases of those velocities, that is, for the second fluxions: instances of wch are frequently to be met with in his {ba}{illeg} Principia Philosophiæ: And where he puts the letters x, y, z for fluents, he denotes their fluxions either by other letters as p, q, r or AB, CD, EF, or by the same letters in other forms as X, Y, Z or , , , \a{illeg} x{illeg} {illeg}/ And this he doth to this day, as is And this is eviden{t b}y his book of Quadratures where he uses \for fluxions/ prickt letters in the first {Pr}oposition, the Ordintes of Curves in the second & last Proposition & other symbols in solving several Problems in the Introduction. Mr Leibnitz has no \symbols of/ fluxions in his method, \& therefore/ all Mr Newton's symbols \of fluxions/ are the oldest in the kind. Mr Leibnitz began to use the symbols of moments dx & dy in the year 1677. Mr Newton used the rectangle moment o & the rectangles under this Moment & the fluxions ever \has represented|s| moments by ye fluxions & the moment o & has done rectangles under ye fluxions & the moment{illeg} o/ \& has done so ever/ since the writing of his Analysis, wch was eight years before or above \at least 45 years ago/. Mr Leibnitz has used the symbols , , for the summs of the ordinates ever since the year 1686: Mr Newton represented the same thing {illeg} by inscribing the Ordinate in a square or rectangle in his Analysis written 17 years before or above. All Mr Newtons symbols are the oldest in their several kinds by many years.
And whereas Mr Leibnitz has represented that the use of the letter o is vulgar & destroys the advantages of the Differential method: \on the contrary/ the method of fluxions as used by Mr Newton has the advantage of the differential in all respects. It is more elegant because he uses \in his calculus there is/ but one infinitely small quantity signified by the Letter o. It is more natural & gemetrical because founded upon the primæ quantitatum nascentium rationes which have a being in Geometry whilst indivisibles upon wch the Differential method is founded have no being either in Geometry or in Nature. There are rationes primæ quantitatum nascentium, but not quantitates primæ nascentes. Nature generates quantities by continual flux or increase, & the ancient Geometers admitted such a generation of areas & solids when they drew one line into another by local motion to generate an area & the area into a line to generate a solid. But the summing up of indivisibles to generate & {sic} area or solid was never yet admitted into Gem|o|metry. Mr Newtons method is also fo a greater extent being adapted either to the ready finding of out of a Proposition or to the demonstrating it: Mr Leibnitz's is only for finding it out. When the work succeeds not in finite equations Mr Newton has recouse {sic} to converging series & thereby his method becomes incomparably more universal then that of Mr Leibnitz wch is confined to finite equations. & when And when the law of the fluxions is not known but the fluxions are had only in a few particular cases, Mr Newton finds that law quamproxime by drawing a Curve line through any number of given points, & thence deduces the solution of the Probleme. And to this degree of perfection Mr Newton had brought his method |sometime| before the year 1676, as appears by his Analysis & his Letters of 10 Decem 1672, & 13 Iune \1676/ & 24 Octob 1676. And when he wrote his Principia Philosophiæ, had re he had recourse upon all occasions to this method & most frequently to that part of it wch is conteined in his book of Quadratures And because by the law of the Ancients Propositions invented by Analysis were not admitted into Geometry till they were composed & demonstrated synthetically he w the Propositions which he found out by his Analysis, he composed which \that the systeme of the heavens might be founded upon good Geometry. And this/ makes it now difficult for unskilful men to see the Analysis by wch they|os|e \Propositions/ were found out. But this Book \compounded with the Tentamen de motuum cœlestium causis/ will be \prove/ a lasting {d}emonstration to all posterity that Mr Newton when he wrote it was master of an Analysis wch carried him through many such difficulties as Mr Leibnitz would have stuck at.
Phil. Trans. p. 206.
resist. {illeg} Grav \ut/ AC.
In the 19th Article of his Tentamen de Motuum cœlestium causis he has pretended to the invention of Mr Newtons Proposition that if a body moving \revolving/ in an Ellipsis describes & with a radius drawn to the
His differential method of Tangents published \at Leip{iu}/ in the year 1684 is nothing es{illeg}|ls|e then Dr Barrows differential method improved so as not to stick at factions {sic} & surds & disguised with new notation & a new name without \wer/ acknowledging any part of ye method to be DrBarrow's, He ought [It lies upon him in point of justice to tell the word how much of the Differential method is Dr Barrows.] or that the \Author/ had received any light into it from Mr Newtons Letters. It lies upon him to prove that what he then published was intirely his own without being obliged to either of them for any thing
All the All the avertions \pretensio{illeg}|n|s/ above mentioned tend to if they be not true tend to diminish the right of invention due to Dr Barrow \Mr Greg. &/ Mr Newton & \to/ let in Mr Leibnitz for a share. And by the Mr Leibnitz has hitherto claimed this share without any proof. His candor cannot make him a witness in his own cause {illeg}he must cla for himself. By the laws of all nations he must claim prove his claim or quit it, & this he ought to do {illeg}a{illeg} wthout delay in point of candor & justice.
It lies upon him to prove that
Mr Newton at his request sent him two inverse methods of Series, \A.C. 1676/ & he understood then wth difficulty & then pretended \wrote back in Iune/ that he had found one of them so long ago \before/ as to have forgot it, as he perceived by his old papers: it lies upon him to prove that he had found it & forgot it before he wrote for it, that is before 12 May 1676. He pretends to be the first inventor of that method of series wch consists in assuming the terms of a series & determining them &c
In his letter of 27 Aug. 1676 he denyed that Mr Newtons method of series extended to the invers me Problems of tangents & when Mr Newton replied that it did extend to them \extend to them/ he answered that Mr Newton spake of \a solution by/ his method of series but {illeg} whereas he d had desired a Geometric solution of such P those Problems: \this implies that he knew th{a} before that it might be solved by the method of series/ it lies upon him to prove that he had desired a Geometric solution & Mr Newton had been speaking of any other solution then by the method of series. \knew it./
It seems therefore that as he learnt the method of fl{u} differential method by means of Mr Newtons aforesaid three Letters {illeg} \compared with/ Dr Barrows method of Tangents: so ten years after \when the Principia Philosophiæ came abroad/ he improved his knowledge in these matters by trying to extend this method \calculus/ to the prima Proposit principal Propositions in that Book. And publish{illeg} \&/ by this means composed the said three Tracts. And yet in the end of the first Tract he published the It lies upon him in candor to acknowledg \And th {sic}/ For the Propositions conteined in them (errors \& trifles/ exceps|t|ed) are Mr Newtons, being published by him in other forms of words before. And yet Mr Leibnitz has published \them/ as invented by himself before Mr Newtons published them \long before/|.| \Pricipia Philosophiæ came abroad./ For in the end of the first Tract he re \For/ In the end of the first Tract he represents that he invented them all before Mr Newton's Principia \Philosophiæ/ came abroad & some of them before he left Paris, that is before the end of the year 1676. And the second Tract
Here he acknowledges \after represents allows/ that the fundamenta Geometrica in quibus maxima consistebat difficultas were layd by \first |now| laid by him in/ what he \{now}/ published in this second Tract, but he should have acknowledged that they were laid \{f} more fully laid before/ by what Newton published before in his Principles. Here he acknowledges \allows/ that he had by this Tract opened vias quasdam novas satis antea impeditas, but he should have acknowledged that Mr Newton had opened them \more fully/ before by his Principles. Here he allows that {illeg}|a|ll that he had now published answered to the calculus summarum & differentiarum, tho it {illeg}{e}{illeg} was here expressed communibus quoad licuit verbis, {illeg}|i|n vulgar words with|out| calculations & \but in candor/ he should \also/ have acknowledged that what Mr Newton had published in his Principles answered to the calculus fluxionum tho writ communibus \quod licuit/ verbis [in the language of the vulgar as far as could be \done/ conveniently. It remains therefore th in point of candor & justice that he now acknowledge at length do justice to Mr Newton by acknowledging these things that he was the first who laid the fundamenta Geometriæ in quibus maxima consistebat difficultas & opened vias quasdam novas satis antea impeditas, & that the composition of his Principles tho written {as} communibus quoad licuit verbis expressa answers throughout to this calculus infinitesimalis \communibus quoad licuit verbis, answered in all things to his the calculus infinitesimalis./
Here he represents pretends that the fundamenta Geometrica in quibus maxima consistebat difficultas were now \first/ laid by him & in this {illeg} \self in this Tract/ & that he had \himself had in this \other/ {illeg}|Tr|act/ opened vias quasdam novas satis antea impeditas. [& that what he ha now published answered to the calculus infinitesimalis tho it writ written communibus quoad licuit verbis]: & yet [he knew & ought to have acknowledged that Mr Newton had done all this before in his Principia Philosophiæ. He cannot pretend \acknowledge/ that he did those thing laid those foundations & opened those new ways before because he by this Tract Tract &S] since] & \yet/ since \And yet/ Mr Newton's Principia \Philosophiæ/ came abroad almost two years before & gave occasion to the writing of this Tract, & conteing conteins all these Principles & \all these/ new ways. And therefore Mr Leibnitz when he published that Tract knew & ought to have acknoledged that Mr Newton was the first who laid the fundamenta satis antea impe{illeg} Geometrica in quibus maxima consistebat difficultas & opened \the/ vias novas satis antea impeditas. [And \For in his Answer to Mr Fatio he allows/ if he objects that this|e| Principles were written \not Analytically but/ Communibus quoad licuit verbis, so was this Tract; & \yet/ all things in it answered to the new Analysis of infinites he tells us the same thing of this \his own/ Tract & yet affirms that in all things it answers to the new Analysis] \He makes no objection against the Book being communibus quo written not in the way of Analysis but communibus quod {sic} licut {sic} verbis. For his own Tract was written in the same manner & yet in all things answered to the new Analysis./ In his Answer to Mr Fatio he tells us that Nemo Ante allows yt No man before Mr Newton specimine publice dato [hanc Methodum] se habere probavit, [proved that he had this method by publishing a specimen thereof \made publick/. And if he knew that the Principia Philosophiæ were a specimen \specimen/ of this method & that Mr Newton was the first who had proved by the published \such/ a specimen of this method & thereby proved that had the method, he ought in candor & justice where h to have acknowledged \this/ when he published those Tracts & ought still to have acknowledged it.] For silencing Dr Wallis & Mr Fatio he could was forced to allow that the Infinitesimal method was Mr Newtons {illeg}ted was the first \Mr Newton was the first \who had/ Inventor|ed| of the/ the infinitesimal method & {illeg} had \the first who had/ proved by a publick specimen \(meaning the Book of Princip)/ that it was his \he had this method/: {illeg} at other times he calls the infinitesimal \method/ his own & at length begins to pretend that Mr Newton had the method from him. What he acknowledged in writin his Answers to Dr Wallis & Mr Fatio, he ought {illeg} & in his Letter to Mr Newton dated March 1693 he ought {illeg} in candor & justice \still/ to acknowledge upon all occasions.
when he wrote those Tracts therefore he was but a learner, & this he improved his knowledge by Mr Newtons Principles & this he ought \in candor/ to acknowledge.
He pretended indeed that to Dr Wallis that he had added some things to the infinitesimal Analysis of Mr Newton, & particularly the infintesi Differential Æquations: but by their Letters written in ye year 1676 its abundantly manifest that Mr Newto Leibnitz had th knew not \did not then know/ how to reduce Problems to differential Equations & Mr Newton did then know how to do it, & tho he did not use the diffential {sic} characters wch Mr Leibnits invented afterwards.
Mr Newton in his Letter of Octob 24 1676, wrote – – – – wrote his said Letter.
Dr Wallis interpoled the indices of Dignities 0, 1, 2, 3, 4, 5 &c by this series . And Mr Newton introduced into his Analytical computations fract the fract, surd, indefinite & negative indices of d|D|ignities; & in – – – – – its usefulness to the world
It lies upon Mr Leibnitz \also/ to make a publick acknowlegment of his Receipt of Mr Oldenburghs letter of Apr. 15. 1675 – – – – – – series as his own
It lies upon him also to make – – – – Method of fluxions.
It lies upon him also to tell the World – – – – from Mr Collins
It lies upon him also to tell the world what was the Method – – – from Mr newton.
And whereas Mr Newton sent him at his own request – – – name of candor & justice – – – – Letter of 10 Decem. 1672 concerning it.
The Editors of the Acta Eruditorum for Iune 1696 – – – – – beg his pardon.
When Mr Leibnitz first published – – – – of candor & justice.
It lies upon him also to satisfy the world why in his Answers to Dr Wallis & Mr Fatio – – – Guilt of that crime
It has been said that the Royal Society – – – – by Persons of Note. And in the mean time – – – – – expulsion to defame them.
The Philosophy of Mr Newton – – – – part of Europe against him.
It is true – – – – rail without arguing.
|21| Mr Leibnitz in his Letter to Dr Sloan dated 29 Decem 1711 retu returned this answer to Dr Keill. Quæ D. Ioannes Keillius nuper ad te scripsit, candorem meum apertius quam ante oppugnant: quem ut Ego hac ætate, post \tot/ documenta vitæ, Apollogia defendam, & cum homine docto, sed novo, et parum perito rerum ante octarum cognitore, nec mandatum habente ab eo cujus interest, tanquam pro Tribunali litigem, nemo prudens æquus probabit. &c. Thus Mr Leibnitz endeavoured to enga{illeg} strip Mr Newton {o} {sic} of \all/ his voluntary friends, & engage him in person wth [either \to/ he wrote himself or employed \to desired & authore{illeg}{illeg}/ a friend to do it for him] & then to set his own friends upon him, as appeared by the consequence. Dr Wallis & Mr Fatio{illeg} had wro|i|te|n| |in| for him |in| in his behalf \of Mr Newton/, but they did it voluntarily without being desired by Mr Newton to do it, \to write/ & therefore Mr Newton \Leibnits/ could not fall out with \him/ for w|t|hat they did {illeg} Dr Keill did the like by two Letters & made him \in such a manner as made Mr Leibnitz/ cry out both times: But the \Doctor/ had no \wanted/ authority from Mr Newton, & therefore Mr Leibnits would not enter the lists \engage/ with him.|,| Mr but challenged Mr Newton himself, & then fell upon him with h \when the Commercium Epistolicum came abroad/ withdrew, pretending that he had not seen that Commercium Epistolicum \Book/, & employin|ed|g (or pretendin|ed|g to employ) a very great \& candid/ Mathematician to examin it {illeg}, & another nameless person to ruffle \Here to assault/ Mr Newton |with hard words.| And by these little Arts & the tot documenta vitæ above described & tells in {illeg} having prepared the way to this engagement by telling And by these little \c{illeg}ious/ Arts & the tot documenta vitæ above mentioned \described/ you \may/ judge whether it be more prudent & just to expect that this|e| \famous man/ should defend \maintain/ /defend\ his candor \or to place this|e| candor above a{ll} humane of so great a man abo/ or to allow him \so great a man so famous a man/ /him\ to be both witness & Iudge in his own \cause/ contrary to the prudence justice & known laws of all nations \& just to expect that he should defend his/ candor, or to place the candor of so great a man \any prudent & just man will place him above/ above {sic} all humane judicature & allow him to be both witness & judge in his owne cause contrary to the laws of all nations prudence justice & laws of all nations, Nosce teips or not rather expect that he should defend his candor.
Pag. 208. lin. 8. after the words [will vanish] add this Paragraph. |this sentence. But the like Objection made against Mr Leibnitz \by Dr Keil/, namely that before the publishing of the Principia Philosophiæ Mr Leibnitz was unskilled in the method of second & third differences, & has| On the other hand, when Mr Leibnitz Newtons Principia came abroad & gave occasion to Mr Newton not \yet/ sufficiently learnt it \wants an Answer/ By the Letters of Mr Newton & the method of Tangents Before the |of| Dr Barrow he fell into the Calculus differentialis, & by the Principia Philosophiæ received further light into it, but is not yet a Master therein.
In the Commercium – – – – without the assistance of Mr Newton. In his second Paper \[In his second Paper/ The Sixt Article of his second Paper, the Proposition \is erroneous vizt/ that the motion of a projected body is compounded of the motion which the body would have by gravity alone without projection & the motion which it would have by projection alone without gravity. And the error arises from his not knowing how to argue well about 2d & 3d Differences. And \in/ his third Paper he|i|s 10 11th & 12th Propositions In his third Paper he founds his infinitesimal Analysis upon his {th} the 10 11th & 12t Propositions of that Paper measures the conatus centrifugus by the angle of contact \or versed sine of the arc descri/ as if the body revolved about the center of the Orbs crookedness. perpendicular dix{illeg} upon it \drawn/ to ye tangent from ye end of the arch des{illeg}cribed in a given momen moment of time] \3/ |2| By his errors in this Proposition Dr Keil has shewed that when he wrote thise three Tracts he did not well understand the ways of working in second Differences. And this is further manifest by his 10th 11th & 12th A Propositions of this Paper or \third/ Tract. For these he lays down as the foundation of his infinitesimal Analysis about centrifugal & centripetal forces.|,| And \&/ proposes \the first of/ them with relation to the center of curvity but uses them \it in the two next/ with relation to the center of center of circulation. And by confounding these two centers with one another in the fundamental Propositions of this calculus, it is manifest that he was hitherto unacquainted with the manner of arguing about 2d Differe centrifu{illeg}|g|al & centripetal forces by the infinitesimal method, & was now attempting to learn it. \by \trying to/ adapting {sic} a calculus to Mr Newtons Propositions/ And the|i||s| thing is further confirmed by his atte{illeg}p the sixt Article of this|e| second of these his three Papers o Tracts. For that Article is an erroneu|o|us Proposition & the error arises from his not knowing how to argue well about second \& third/ differences. By Mr Newton's Letters he learnt to improve Dr Barrows method of Tangents & there in the year 1677, [& \then/ gave the name \of the Differential method/ to this improvement,] & ten years after upon the publishing of the Principia Philosophiæ tried to extend this method to the P{illeg} Propositions conteined in that Book: & in the end of the first T of the first published these three Tracts upon the chief of those Propositions not in his usual \as invented by himself/ representing in the end of the first Tract that he found them all before Mr Newton's Book came abro{illeg}|ad|e, A & some of thē even before he left Paris, wch {illeg} & concludes|in||g| the second Tract with these words: Multa ex his deduci possent praxi accommodata, sed nobis nunc fundamenta Geometrica jecisse suffer|c|ere{illeg}|it|, in quibus maxima consistebat difficultas. Et fortassis attente consideranti vias quasdam novas satis antea impeditas apperuisse videbimur. Omnia autem respondent nostræ Analysi Infinitorum, hoc est calculo summarum & differentiarum (cujus elementa quædam in his Actis dedimus) communibus quoad licuit verbis hic expresso. \But what he here ascribes to himself he should in justice have ascribed to Mr Newton/ [Mr Newton had writ his Principles communibus verbis: Mr Leibnitz immitated him in these Tracts, tho he met in these Tracts \in writing this Tract communibus verbis/ tho he had laid aside this way of writing long before. And tho he wrote communibus verbis yet he & wrote nothing more (of truth) then what Mr Newton & \had/ written in other words before, yet he calls his performance fundamenta Geometrica \a se jacta/ in quibus maxima consistebat difficultas & said that he had opened vias quasdam novas & satis antea impeditas, & that his performance answered in all this|n||gs| to his infinitesimal Analysis.] Thus he made the Germans in those days beleive that he had laid was the first inventor of all this, [& now with the same sort of candor he tells them that the fundamenta Geometrica in quibus maxima consis the Principia Philosophiæ doth \did/ not contein \lay/ {illeg}|th|e fundamenta Geometrica in quibus maxima consistebat difficus|l|tas, nor \opened/ the vias novas & satis antea impeditas nor answers to the infinitesimal Analysis, but is written in the \vulgar/ way of the Ancients without the help of the|i||s| infinitesimal Analysis.] \Whereas/ He ought in those days to have acknowledged \in those tracts/ that his book Mr Newton by |in| \his Letters & book/ his Princip|i|le|a| \Philosophiæ/ had laid the fundamenta Geometrica in quibus maxima consistebat difficultas, & \had/ opened the vias novas & satis antea impeditas & in \that the composition of this Book in/ all things answered to the infinitesimal method Analysis described by him ten \many/ years before or above in his three Letters above mentioned And since he has yet acknowledged all this, he {ou}ght \lies upon him/ now to acknowledge it in candor & justice to acknowledg it \make an {illeg} express & full/ full acknowledgment therefor] & further described in the second Lemma of the second book of these Principles & in the Scholium upon that Lemma, & illustrated with a|n| plain example \in demonstrating the 14th Proposition of that book & with another example/ in solving the 31th Probleme of the first b|B|ook & with another \good/ Example of solving in the Scholium upon the 103d Proposition of the same Book|.| & manifested And since he has not yet acknowledged these things but \his on the contrary has/ of late began to deny thi{s}|em|: it lyes upon him {now} in point of candor & justice to make an express & full acknowledgment thereof.
4
|15| The Editors of the Acta Eruditorum, \in Iune 1696/ in giving account of Mr the two first Volumes of the opera mathematical \works/ of Dr Wallis, use thes{illeg} wrote thus in the style of Mr Leibnitz. Cæterum ipse Newtonus non minus candore quam præclaris in rem mathematicam insignis meritis in{illeg}|s|ignis, publice et privatim agnovit, Leibnitium tum cum (interveniente celeberrimo Viro Henrico Oldenburgo|i|o Bremensi, Societatis Regiæ Anglicanæ tunc Secretario) inter ipsos (ejusdem jam tum Societatis Socios) Commercium intercederet), id est jam fere ante annos viginti et amplius Calculum suum differentialem, series infinitas, et pro ijs quo Methodos generales habuisse; quod Wallisius, in Præfatione operis|u|m, factæ inter eos communicationis mentionem faciens, præterijt, quoniam de eo fortasse non satis ipsi constabat. Cæterum Differentiarum consideratio Leibnitiana cujus mentionem facit Leibnitius Wallisius (ne quis scilicet, ut ipse ait, causaretur de Calculo Differentiali nihil ab ipso dictum fuisse) meditationes aperuit, quæ aliunde non æque nascebantur. &c. ‡ ‡ \Mr Leibnitz here pretends that Mr Newto had therefore seen the Preface of Dr Wallis/ where Mr Newton is said to have explained to \[/Mr Leibnitz) {illeg} in the year 1676 the method of fluxions found by him ten years before or abou|v|te & in answer thereunto, pretended only that Mr Newton \had/ acknowledged only \& Dr Wallis should have acknowledget had he known it/ that he (Mr Leibnitz) had the . . . . . Ordinatarum] differential method in the year 1676 or before: whereas Mr Newton acknowledged nothing more th{illeg}|e|n what he still acknowledges, vizt that Mr Leibnitz had it when he wrote his Letter of dated 21 Iune 1677. And this confirms me in a|t|he opinion \a suspicion/ that Mr Leibnitz in that Letter used the words Et jam above mentioned Et jam a multo tempore &c, with a designe to make his \the Germans/ beleive that he had found the differential method long before the writing of that Letter, & by consequence before the writing of the Letters wch passed between him & Mr Newton in the year 1676, & that he has been evers since carrying on a designe to make this be beleived And yet b its \very/ certain by what we shewed above that he himself knew that he did not invent it before the {illeg} his return from France through England & Holland into Germany in the year 16 end of the year 1676. In his Answer to Mr Fatio printed in Acta Eruditorum anni 167 1700 pag 203 he writes: Newt Ipse [Newtons|u|s] scit unus omnium optime, satis indicavit publice Cum sua Mathematica Naturæ Principia publicaret Anno 1687, nova quædam inventa Geometrica quæ ipsi communia mecum fuere, NEVTRVM LVCI AB ALTERO ACCEPTÆ, sed meditationibus quem suis debere, et a me jam decennio ante exposita fuisse [i.e. anno 1677] exposita fuisse. I And yet Mr Newton \in his Letter of 24 Octob. 1676 did represent that the ground of his method was sufficiently obviou was suff/ iciently obvious by what he had written, & never did allow that Mr Leibnitz found out that Method without receiving light into it from the \three/ Letters sent t above mentioned sent to him by Mr Oldenburg, in the years 1676 & 1677. Mr Newton \indeed/ out of an aversness from disputes forbore to contend with abo enter into a contention with him about it. \complain/ & Mr Leibnitz has abused his candor by pretending that he allowed that Mr Leibnitz found out therby pretendin|ed| not only that he found the method apart before the writing of the Let without receiving any light into it from Mr Newton & even before the {illeg}t{illeg} he received any of Mr Newton's Letters; {illeg}|b|ut also that Mr Newton himself has allowed all this. And for abusing Mr Newtons candor in this manner, he ought in justice to beg his pardon. Here Mr Leibnitz pretends that Mr Newton \had therefore seen the Preface of Dr Wallis (in the Scholium to the second Lemma of his Principles)/ acknowledged that he (Mr Leibnitz) had the differential method in the year 1676 or before: whereas Newton acknowledged nothing more then what he still acknowledges, {illeg}t vizt that he had it in the year 1677 when he wrote his Letter dated 21 Iune 16 1677. And this confirms me in m|th|e opinion that it was with a designe to make himself the oldest inventor that he wrote in the beginning of that Letter: \Clarissimi Slusij methodum Tangentium nondum esse absolutam Newtono assentior;/ Et jam a multo tempore s{it} rem tangentium generalis tractavi scilicet per differentias Ordinatarum....
and the result, not related in any clear visual way to the sum:
\Philos. Tra{nsacti}/ p. 210 after lin. 20 add
|9 p. 215| And whereas Mr Newton sent him at his own request a method of Regression, wch upon the first reading he did not known to be his own, nor understood it; but so soon as he understood it, he claimed it as his own by pretending that he had found it long before & had forgot it, as he perceived by his old papers: it lies upon \him/ in point of candor & justice, either to prove that he {illeg} was the first inventor of this method, or to renounce his claim to it for preventing future disputes
|10 p. 215| Mr Leibnitz in his Letter to Mr Oldenburg dated 3 Feb. 167, claimed a right to a \certain/ property of a Series of numbers natural pyramid{a} triangular pryamidal, triangulo-triangular &c: & to make it \his/ own represented that he wondred that Mr Paschal should omit it. Mr Paschal in his book entituled Triangulum Arithmeticum should omit it. That book was published in the year 1665 & conteins this property of the series & Mr Leibnitz has not yet done him the justice to renounce his claim to this property & acknowledge Mr Paschal the first inventor.
|11 p | He is also to renounce all right to the Differential Method of Mouton as second Inventor. For second Inventors have no right. The sole right is in the first Inventor untill another finds out the same thing apart. In wch case to take away the right of the first Inventor & divide it between him & that second other would be an Act of injustice.
|12 p. 215| In his Letter to Dr Sloan dated 29 Decemb. 1711, he has told us that his friends know how he came by the Differential Method. It lies upon him in point of candor openly & plainly to tell the world how he came by it & without further hesitation to tell \satisfy/ the world how he came by it.
|13 p. 216| In the same Letter he has told us that he had this method above above nine years before he published it, & it follows from thence that he had it in the year 1675 or before. And yet its certain that he had it not when he wrote his Letter to Mr Oldenburgh dated 27 Aug. 1676 wherein he affirmed that Problems of the Inverse Method of Tangents & many others could not be reduced to infinite series nor to Equations or Quadratures. It lies upon him therefore in point of candor to tell us what he means by pretending to have found the Method before he had found it.
In his Letter of 21 Iune 1677 he
|14 p. 216|We have shewed that Mr Leibnitz in the end of the year 1676 in returning home from France through England & Holland was meditating how to improve the Method of Slusius \for Tangents/ & extend it to all sorts of problems, & for this end proposed the making of a general Table of Tangents, & therefore had not yet found out the true improvement: but about half a year after, when he was newly fallen upon the true improvement, wrote back; Clarissimi Slusij methodum tangentium nondum esse absolutam Celeberrimo Newtono assentior. Et jam a multo tempore rem tangentium generalius tractavi, scilicet per differentias Ordinatarum. Which is as much as to say, that he had this improvement long before those days. It lies upon him in point of candor to make us understand that he pretended to this antiquity of his invention with some other designe then to rival t{illeg} & & supplant Mr Newton & to make us beleive that he had the Differential Method before Mr Newton explained it to him by his Letters of 13 Iune & 24 Octob 1676, & before Mr Oldenburgh sent him a copy of Mr Newton's Letter of 10 Decem. 1672 concerning it.
Mr Leibnitz in his Answer to Mr Fatio published in the Acta Eruditorum
|16.| |p. 219 220| When Mr Leibnitz first published his Differential method he ought in candor to have acknowledged what he knew of Mr Newtons method for doing the same things. [All that he then explained con of his own method, was how to draw Tangents & determin maxima & minima without taking away surds fractions or surds. He certainly knew that Mr Newton's method would do all this & therefore ought in candor to have acknowledged it. After he had thus far explained his own method, he added, that what he had laid down were the Principles of a much sublimer Geometry reaching to the most difficult & noble \valuable/ Problems which were scarce to be resolved without the differential calculus AVT SIMILI or another like it. What he meant by the words AVT SIMILI was impossible for the Germans to understand without an interpreter. He ought to have done Mr Newton justice in plain intelligible language & told his Readers that the Method which he there published extended to such difficult Problemes as were not to be resolved without {illeg}his Differential Calculus {illeg} Differentialis or another calculus invented by Mr Newton some notice of which he had received by his correspondence wth Mr Newton Oldenburg & which \by reason of performances/ he took to be like his own \& upon which was invented some years before the year 1676/. But on the contrary in his Answer to Mr Fatio published in the Acta Eruditorum for May 1700, he denyes \almost/ all this. His words are: Certe cum elementa Calculi mea edidi anno 1684, ne constabat quidem mihi aliud de inventis New ejus [sc. Newtoni] in hoc genere quam quod ipse olim significaverat in literis, posse se tangentes invenire non sublatis irrationalibus, quod Hugenius quo se posse mihi significavit postea, etsi cæterorum ejus calculi adhuc expers. Sed majora multo consecutum Newtonum, viso demum libro Principiorum ejus, satis in intellexi. And he is since gone back \even/ from what he acknowledged here, & tells us now that the book of Principles is written in the manner of the Ancients, & hath nothing of the new Analysis in him |it| nor makes it appear that Mr Newton knew any thing of \understood/ these methods when he wrote it. And yet that Book is \very/ full of such Problemes as L|M|r Leibnitz himself, when he first published his method, called difficillima et pulcherrima etiam mistæ Matheseos Problemata quæ sine Calculo Differentiali AU AVT SIMILI non temere quisquam pari facilitate tractabit. And Mr Leibnitz himself in his Letter of 21 Iune 1677 after he had explained his method & shewed how it readily gave the method of Tangents of Slusius & proceeded without sticking at surds taking away surds, declared himself of opinion that since Mr Netons method did the same things it was of the same kind; especially since both{illeg} the methods also facili|t|ated Quadratures. th{es} Arbitror, saith he, quæ celare voluit Newtonus de Tangentibus ducendis ab his non abludere. Quod addit, ex hoc eodem fundamento Quadraturas quo reddi faciliores, me in sententia hac confirmat, nimirum semper figuræ illæ sunt quadrabiles quæ sunt ad Æquationem differentialem. And Mr Newton had told him further in his three Letters above mentioned that his Analysis \(wch proceeded in equations both finite & infinite)/ determined extended to \problems about/ the lengths & curvatures of curves & to \inverse Problemes of Tangents & to/ almost all sorts of Problemes & represented it so general that Mr Leibnitz himself \(in his letter of Iune 21, 1676)/ exprest his disbeleif of it. It lies upon him therefore in candor & justice to acknowledge this & to give an account why he was silent about all \this/ when he first published the Differential method. For it was not enough to mention a methodus SIMILIS without saying whose it was & of what extent & antiquity (according to the notices he had \received/ from England,) & acknowledging that his own method was not so ancient. For nothing less then this deserves the name of Candor & Iustice. For Nothing elss than this could fully deserve the name of Candor & Iustice.
Notes & emendations upon the Account of ye Commercium Epistolicum published in the Transactions for Ian. & Feb. 171.
Pag. 175. lin. Add. The Logarithmotechnia came out in September 16{illeg}|6|2 & thereExercfore by the testimony of Dr Barrow the Analysis per series was invented & generally applied before Septem. 167|6|6. The Exercitationes Geometricæ came out towards the end of the yeare 167|6|8 & Dr Barrow sent the said Compendium or Analysis to Mr Collins in the Iuly following, {in}|as| appears &c.
Pag. 176. \lin 20/ After the words haud integrum ducit \conferatur add/, add {sic}: Testimonijs igitur this Paragraph.
In the first of these two citations the words Quadratura vel Area dictæ figuræ, accurata si possibile sit, sin minus infiniè vero propinqua relate to the words of the Analysis: Hujus cujus [Analyseos] beneficio Curvarum areæ & longitudines &c (id modo fiat) exacte et Geometrice determinantur. Sed ista narrandi non est locus. How this {is} done is explained in the first six Propositions of the Book of Quadratures. And without the method there explained it is not to be done. And therefore by the testimonies of Dr Barrow & Mr Collins Newton in the ye{so} had improved this Method of Analysis some years before Iuly 1669 (that is (as Mr {illeg} as they del two years before the Logarithmotechnia came abroad, or in the year 1666, had impro as was expest {sic} above) had improved this method of Analysis so far \at least/ as it is described in the first or six Propositions of the said book of Quadratures.
Pag. 194. lin. 5. Add this Paragraph.
This was the furst Rule for made publick finding {illeg} second third & fourth differences & is the best.
Rixarum scopus fuit ut
Ad Lectorem
When Mr Newton wrote his Book de Philosophiæ naturalis Principia Mathematica, he found the
The ancients \had their \method of/ Analysis but/ admitted nothing into Geometry before it was demonstrated by Composition. The moderns \neglect Composition &/ are intent only upon Analysis, & so soon admit analytical inventions into Gem\o/etry {sic} before they are demonstrated by Composition. Mr New Mr Newton that his Synthetical Demonstrations \are easier to be read/ render Propositions more certain, & convey them better to posterity. {illeg} For the character For the symbols used in Analysis are apt to be changed from time to time. every author of note Mr Newton for these reasons & that th{illeg}|e| Propositions \in his Principia Philosophiæ/ might be \fit to be/ received into Geometry, after he had invented them by Analysis, composed demonstrated them by composition. But the Analysis is so conspicuous through the composition that the Marquess de l'Hospital said that this Book was almost wholy of the Infinitesimal calculus, & Mr Leibnitz in a Letter to Mr Newton dated 7 Mart. 1693 wrote thus of {illeg} it. Mirifice ampliaveras Geometriam tuis seriebus, sed edito Principiorum opere ostendisti patere tibi etiam quæ Analysi receptæ non subst|u|nt. Conatus sum Ego quo notis commod|is| adhibitis quæ summas differentias & summas exhibent, Geometriam illam quam transcendentem appello, Analysi quodam modo subjicere, nec res male successit.
The Elements of this method are conteined in the first Proposition of the Book of Quadratures & \also/ in the second Lemma of the second book of Principles, with the Scholium thereupon|.| & The Proposition \is/ in the Scholium & \the/ solution therof in the Scholium Lemma. The \same/ Elements are also conteined in Mr Newton's Letter to Mr Collins dated 10 Decem 1672: a copy of wch was sent to him Mr Leibnitz by Mr Oldenburg among the extracts of Gregorius Letters 26 Iune 1676. For there Mr Newton described a method of Tangents wch he conjectured to be the same – – – so is the Ordinate to the subtangent , & so is the increase or fluxion of the Ordinate to the fluxion of of {sic} the Abscissa . And by multiplying the extreames & means you have the Equation , or . And this equation is the same with that wch is produced by the first Proposition of the Book of Quadratures wch|he|n there are but two unknown Quantities proposed. If there be more then two the same operation must be applied to them all gives the solution of that Proposition.
In Mr Newtons Letters of 13 Iune & 24 October 1676 there was a further des{illeg}|c|ription of this method in wch gave occasion to Dr Wallis {illeg} in the Preface to the two first volumes of the {illeg} his works, to write that the Quam [Methodum] ego descripsi ex binis Newtoni Literis (Algebræ cap. 91 )|&|c præsertim cap 95) ex binis Newtoni Literis (aut earum alteris) Iunij 13 &c Octob. 24 1676 ad Oldenburgium datis, cum Leibnitio tum communicandis (ijsdem fere verbis, saltem leviter mutatis quæ in {illeg} illis literis habentur;) ubi methodum hanc Leibnitio exponit, tum ante decem annos nedum plures ab ipso excogitatam.
By these Mr Newtons Letters Mr Leibnits was put upon thinking how to improve the Method of Tangents of Slusius & in his way from England into Germany wrote to Mr Collins \Oldenburg/ 18 Novem 1676 st. v. that it might be done by a Table of Tangents, &|A|nd that he had discoursed wth Hudden at Amsterdam & that the method of Tangents of Slusius was known to him long ago, & was {illeg} more ample then that wch Slusius had published. And we understand since that Hudens had improved his method did not stop at surds.
was seen by Mr Leibnitz in London & a copy thereof came to his hands at Hanover in the beginning of Spring following. Pag 194. lin. 6. So {illeg} in his Analysis he uses the symbol in the same sense in wch Mr Leibnitz uses the symbols . pag. 25. lin 16.
Mr Newtons Rule for finding second third & fourth Differences published by Dr Wallis in ye second Volume of his works wch came abroad in Spring 1693, was the first Rule made public for doing this. And it doth not appear that Mr Leibnitz had any Rule for second \& third/ differences before. p. 208. lin. 8.
Philosoph. Transact. for Ian & Feb. 16{illeg} 171
Pag 174. lin. 21 for ten write fifteen.
P. 176. lin 21 for being write from a copy
Ib. l. 24. After of Mr Newton add: The impression was finished in December 1710.
P. 184. lin 3. dele and Mr Collins
Pag 191 lin 22 After year 1670 add From this Method & his own Mr Gregory Deduced a method of Tangents without computation, & notified it to Mr Collins in a Letter dated 5 Novem 1670. Mr Ne
Ib. between lin 23 & 24 insert, conjecturing that it was the same with that of Gregory & Slusius.
Pag 194 lin 6 for [came to the hands of Mr Leibnitz \in the end of winter or] beginning of the/ write was seen by Mr Leibnitz in London in November, & a copy thereof came to his hands in|at| Hanover in the beginning of Spring following.
Pag 195 lin 23. after 1696 add none of them being printed before the year 1699.
Pag 198 lin penult.
Pag 199 lin 14 after [he gave the] add following, & put an asterisk after the word Letter.
Pag. 201 lin 6 for his write the
Ib. lin 28 after he added insert concerning a branch of this method by wch Mr Mr {sic} Newton A.C. 1686 found the solidum minimæ resistentiæ: Quam
Pag. 203 lin. 4 after Acta Leipsica insert had not in the least detracted from anybody but
Ib. lin. 9 for Novice write new man
Pag. 205 lin 16. after Rectangle add For there he uses the symbol in the same sense in wch Mr Leibnitz uses the symbol .
Pag. 208|7| lin {illeg}|3|3. This after & 396, add. This was the first Rule made publick for finding second third & fourth differences & is the best.
Pag. 209 lin. 21. after compared insert with Gregories Letter of 5 Novem. 1670 &
Pag. 212 lin 199. for many years after write in the Acta Eruditorum for April \Aug./ 1693.
Ib. lin 21. after thereof add, & calling it Methodus universalissima pro seriebus.
Pag. 224. lin 34. after Arguments for insert the being of
Of the Notes.
Annotationes quæ in Epist{illeg}|o|las scriptæ sunt nullius sunt authoritatis nisi quam ab ipsis epistolis derivant. De his jactæ sunt \factæ|a| est/ quærela sed quasi malignæ essent sed malignitas est in ip Epis nondum ostensum est quod aliquid an{illeg} continent \contra D. Leibnitz in ipsis sit/ quod non sit in Epistolis.
Commercium \hocce/ Epistolicum lucem vidit sub finem anni 1712, et subinde per biennium D. Leibnitius, ne {e}os eidem responsum daret, \cum eidem respondere e|n|on posset,/ prætendit \per biennium/ se librum non vidisse, sed a magno cum ipse per occupationes diversas rem tunc discutere non satis posset \et/ ad judicium primarij Mathematici provocasse, cum ipse per occupationes diversas rem tunc discutere non satis posset. Et sententia hujus Mathematici \per Epistolam/ 7 Inuy {sic} 1713 data fuit, & \dari fingebatur & Epistola/ /datam\ in alia charta scurrili \die/ 29 Iulij ejusd sequentis descripta \fuit/ \data descripsit/, et per Europam sparg{i}|{a}| \curavit/, sine nomine \vel/ Mathematici vel Impressoris vel oppidi \urbis/ in qua impressa fuit. Et anno proximo in|per| Epista|o|la s|m| ad D. Chamberlai|y|ne Viennæ 25 Aug. 1714 \1714/ datam, postulavit ut Epistolæ nondum editæ Societas Regia Epistolas nondum editas ad ipsum mitterent. Nam, inquit, cum Hanoveram \inquit/ rediero possum etiam in lucem emittere Commercium aliud Epistolicum quod Historiæ l|L|itterariæ inservire possit. Et Et litteras quæ contra me allegari possunt non minus publici juris faciam qu quam quæ pro me faciun{illeg}|t|{illeg}. et judicium \Hæc Leibnitius./ Sed ficta erat insinuatio ut ex jam dictis dicendis patebit. Non cum D. |accusatio cum totum inter ipsum et oldenburgum Commercium continua serie impressum fuit, ut jam dictum dictum fuit est. præter Epistolas duas quæ non extant. S{illeg} Sub finem anni proximi cum D.| Leibnitius probare vellet quod Concessus a R. Societate constitutus omnia omissent quæ contra Newtonum facerent, scripsit \is/ in Epistola sua prima ad Abbatem de Comitibus, quod in secundo ejus in Angliam itinere, Collinius ostendit ipsi – – – ad ipsum Leibnitium 8 Decem 1674. [Porro Libri Epistolici qui in Archivis R. Societatis asservantur, exam{ina} anno 1675 \de novo/ examminati fuere \anno 1675/ et null in Epistolis \omnibus/ inter Leibnitiū et Oldenburgum \scriptis/ nihil inventum est quod ad hanc rem spectans quod Concessus a R. Societate constitutus omisit.]
Sub finem anni 1715
In eadem ad Abbatem de Comitibus Epistola, scripsit D. Leibnitius quod qui Concessus qui contra ipsum scripsissent (is|d| est Concessus {illeg} a Societate Regia constitutus) candorem ejus aggressi essent per interpretationes duras & male fundatas, \et quod {illeg}|h|i/ illi voluptatem non habebunt \habe {sic}/ respondendi videndi ne respondentem ad responsa e{illeg}|jus| ad parvas rationes eorum qui {illeg}e \ipsum/ tam male utuntur \tractassent./ Si hoc ita esset; ostendere debuisset in casibus aquot aliquot quod eorum interpretationes essent duræ et male fundatæ. Notæ in Epistolas nullius sunt authoritatis nisi quam ab ipsis Epistolis derivant, et facile confutantur si male fundatæ sunt. Sed ne Epistolis responsum fuit ne Notis in easdam: ideo utre|o| jam denuo impressæ sunt ut quibus responderi non potest.
Newtonus in Epistola sua ad Abbatem de Comitibus 26 Feb 171 data, quo D D. Leibnitij Literis \ita/ respondebat. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse factis respondere|.| impossibile esse. Silentium suum hac in re excusat, alle{illeg} impræsentia allegando \impræsentia/ quod librum nondum vidi\sse/t, et quod otium illi non esset ad examinandum, sed quod orasset Mathematicum celebrem ut hoc negotit|u|m in se susciperet &c Et D. Leibnitius in proxima sua ad Abbatem de Comitibus Epistola 9 Apr. 1716 data, pergebat se excusare ne responderet, dicendo: Vt respondeam perfecte respondeam operi contra me edito perfecte respondeam, opus erit alio opere non minore quam hoc est. opus erit percurrere corpus magnum minutorum quorum ante annos 30 vel 40 præteritorum, quorum perparvum reminiscor, opus erit examinare veteres epistolas quarum plurimæ sunt perditæ, quorū præterquam quod maxima ex parte non conservavi minuta mearum, & reliquæ sunt sepultæ s{in}t|un|t in maximo chartarum acervo quem non possum examinare ni{illeg} sine tempore et patientia sigillatim examinare. Sed otium minime mihi suppetit alijs negotijs occupato alterius prorsus generis occupato. Hactenus Leibnitius. Attamen post mortem ejus, quæ accidit proximo mense Septembri, amici \ejus/ famam sparserunt \scriptum est ejus in ejus Elogio/ quod Commercio Epistolico Anglorum aliud quoddam suum, idem ol amplius opponere decreverat. Vide Elogium Sic enim scripserunt in Elogio ejus quod in Actis Eruditorum pro mense Iulio 1717 impressum est.] {sic}
<186r>Mathematicus Iohannem Bernoullium tanquam a se diversum citaverat. Set post annos s|d|uos cum semisse Leibnitius citationem omisit & Bernoullium esse Mathematicum illum prætendit|er|e cœpit.
Sed accusationem Leibnitius probare non potuit ut jam vidimus, et \Et/ Totum inter ipsum et Oldenburgum Commercium continua serie \jam ante/ impressum fuit, {illeg} præ ut jam vidimus præter Epistolas duas quæ non extant.
Methodus momentorum
Elementa methodi momentorum & fluxionum & momentorum Wallisius in secundo operum Volumine edidit ineunte anno 169{illeg}|3| & {illeg} Regu in prima Propositione libri de Quadratur{um}|is| h] Anno 1691 Halleus noster & Ralphsonus Librum \MS/ Newtoni de Quadraturis |figurarum manibus suis inverunt ut| Regula inveniendi fluxiones primas secundas tertias cæteras in infinitum in Propositione prima Libri de Quadraturis habetur. Hanc Regulam Wallisius \Propositionem exemplis in/ \fluxionibus primis et secundis illustratam Wallisius/ in secundo operum Volumine in lucem edidit ineunte anno 1693 & exemplis in fluxionibus et hæc fuit Regulæ omnium prima pro fluxionibus secundis tertijs alijs in infinitum inveniendisquæ\quæ/ lucem vidit \ed{illeg} |vidit.|/. {sic} [Anno 1695 Wal ineunte Wallisius audivit quod Methodus fluxionum Newtoni celebrari inciperet in Hollandia sub nomine methodi differentialis Leibnitij, & me{illeg} in Præfatione ad \operum suorum/ volumina duo prima {illeg} admonitionem inseruit qua|o|d hæ duæ methodi una et eas|d|em esset Methodus sub diversis tantum formulis, quam Newtonus Literis 13 Iunij & 24 Octob. exponit 1676 ad \Oldenburgum datis/ Leibnitio exponit tum ante decem annos nedum plures ab ipso excogitatam. Anno 1695 Editores Actorum Leipsiensium in Epitome operum Wallisij nihil nihil in contrarioni disputarunt. Sed ne Leibnit{us}|ius| in Le|i|teris quæ inter ipsum et Wallisium mox intercedebant de hac re \Wallisio/ questus est. Anno 1697 Literæ] Propositionem quintam libri Principiorum de quadraturis edidit etiam Wallisius in eodem Volumine pag. eadem \Et hæc Propositio/ continet methodum quadrandi Curveis|ilin||eas| ubi fieri potest. Hanc methodum anno 1669 Newtono innotuisse patet ex Ejus Analysi per Series quam Barrovius eo anno ad Collinium misit, in qua uti dicitur quod hujus Analyseos beneficio Curvarum areæ et longitudines &c (id modo fiat) exacte et geometrie determinantur. Sed et aliquot annis antequam Mercatoris Logarithmotechnia prodiret innotuit hæc method{illeg}|u|s Newtono, {illeg} innotuit Barrovio et Collinio testibus. Sic enim Collinius ad D. Thomam Strode 26 Iulij 1672 scripsit. Mense septembri 1668, Mercator Logarithmotechniam edidit s{illeg}|u|am, quæ specimen – – – obtineri queant. Quinta autem Propositio \Libri de Quadraturis/ pendet a quatuor prioribus. Et propterea methodus fluxionum quatenus continetur in Propositionibus quin primis libri de quadraturis Newtono innotuit anno 1666 aut antea. Hoc Wallisius in Præfatione ad operum suorū volumina duo prima asseruit nemine per ea tempora contradicente. Newtonus in Introductione ad Epi librum de Quadraturis nihil amplius asseruit. Et tamen inde nata est hæc controversia.
In Analysi per series Newtonus utitur symbol in eodem sensu quo Leibnitius symbolo , et symbolis o, ov, oy in eodem quo Leibnitius symbolis dx dy dz.
In methodum inversam fluxionum ingressum \tantum/ dedit sed &
Aliud quoddam Commercium Epistolicum non habuit. Inventum novum in Analysi ad rem nil spectat.
{Ed} Mathematicus \autem/ Bernoullium citabat tanquam a se diversum, Leibnitius vero sub finem anni 1715 citationem emisit \delevit/ et Mathematicum esse Bernoullium ipsum scripsit; eum tamen Bernoullius judex constitui non posset nisi ipse juri omni in methodum infinitesimalem \prius/ renunci{illeg}t|as|set. \Huic judice opponendus est/ Wallisius vir antiquus qui litras Newtoni anno 1676 ab Oldenburgo acceperat judicium pro Newtono, \& rem intellexerat ab tulit initio &/ in Præfatione ad operum suorum volumina duo prima anno 1695 judicium \pro Newtono tulit/ Dominis Leibnitius & Menkenio per ea tempora non mussitantibus.
Porro at D. Leibnitius, ad anno 1714 per Epistolam 25 Aug ad D. Chamberlayn 25 Aug. datam postulavit ut Societas Regia – – – quæ non extant. Et ne respondeat {illeg}atur eti{a}m me aggreditur insuper d{illeg} proponendo disputationes \novas/ Philosophicas & Problemata solvenda quæ duo ad rem nil spectant.
Scribendis literis \quam plurimis/, disputationibus philosophicis \instituendis/, & Problematibus tractandis vacab{illeg}|a|t, Commercio Epistolico confutando me|i|\nime/ vacabat non vacabat.
— Dixit uti Newtonum anno 1676 \1676/ Methodum infinitessimalem Leibnitio per Literas \anno 1676/ exposuisse tum ante decem annos nedum plures inventam ab ipso excogitatam. Sed et in secundo ejus Volumine quod lucem vidit anno 1693, Propositionem primam \ut/ et quintam libri de Quadraturis in lucem adidit, Vnde manifestum est quod Liber ille tunc \{illeg}/ in MS extabat. Nam et Colli Halleius et Ralphsonus nostrates anno 1691 \librum illum/ in MS manibus suis triverunt ut alter eorum testatum reliquit, alter adhuc testatur.
In Propositione illa prima habetur Regula inveniendi fluxiones primas secundas tertias alias omnes in infinitum. Et hæc fuit Regula omnium prima \quæ lucem vidit/ pro fluxionibus secundis {illeg} ac tertijs \tertijs et superioribus/ inveniendis quæ lucem vidit est omnium optima.
<185v>In Propositione 8 quinta habetur methodus quadravi cu{m} figuras accurate et Geometrice {ub}i {illeg} \illa/ cujus beneficio Curvarum areæ ({illeg}|i|d modo fiat) exacte et Geometrica|e| determina|e|ntur, {d}e qua \ac de Et hanc methodum uti/ New Newtonus in Analysi \{illeg}/ sua per series locutus est anno 1669 a Barrovio ad Collinium missa locutus est \se habere dixit./ Hæc Propositio pendet a quautor prioribus: ideo method{illeg}|u|s f fluxionum quatetenus {sic} in Propositionibus quin primis Libri de Quadraturis habe cotinetur {sic} \anno 166{illeg} 1669/ Newtono innotuit: anno 1669{illeg} {at} \imo/ et annis aliquot antea {t}este Barrovi{illeg} Epistola Collinij ad \quam Mercatori Logarithmotechnia prodiret/ [mense septenbris {sic} anni 1668] teste|i||bus| Barrovio \Et Collinio/ in Epistola Collinij ad Thomam Strode [26 Iulij 1672 data], id \inferius impressa, id/ est anno 1666 aut antea, ut Wallisius affirmavit.
Dixit Iudex ille literas punctis notatas lucem non vidisse antequam tertium Wallisij Volumen prodiret quod fuit anno 1699. Lucem autem viderunt in secunde ejus Volumine quod prodijt anno 1693. In hoc secundo Volumine \pag. 391 392, 393/ habetur Propositio prima Libri \Newtoni/ de Quadraturis Curvarum, constructa et exemplis in fluxionibus primis & secundis illustrata. Et hoc fuit Regula omnium prim{illeg}|a| quæ lucem vidit \& prio in lucem edita/ pro d{illeg} fluxionibus \& momentis/ secundis tertijs quartis cæteris in infinitum inveniendis, est \omnium/ optima. In eodem secundo Volumine edita \pag. 391/ etiam fuit Propositio quinta libri de Quadraturis. \Et/ In hac Propositione habetur methodus illa cujus beneficio
– pro dz Newtonus utitur symbolo ov & pro symbolo . In Introductione ad
After 1693 write. Et in ejus anno 1669 \Newtonus/ in ejus Analysi per series Newtonus utitur pro symbolo dz utitur symbolo ov et pro symbolo utitur \Newtonus/ \usus est/ symbolis ov & in eodem sensu quo Leibnitius postea utitur \usus est/ symbolis dz & .
sed ubi Epistola ne unquam ora comparavit; sed ubi \priusquam/ Epistolā 12 Maij 1676 datam \ad Oldenburgium scripsit/ oblitus est se series acc illas accepisse
|—| Leibnitius vero sub finem anni 1715, in versione Gallica in Hollandia edita citationem illam m{ini}t (nescio qua fide) omisit et Mathematicum esse Bernoullium ipsum scripsit, & problemata Bernoullij Analystis Anglis solvenda proposuit, & chartam illam volantem denuo dispersit, et ad Bernoul |ad| sententiam Bernoullij allegando \appellando/, amicos suos rerum . . . . conatus est
Post tres annos Marchio Hospitalius Regulam similem edidit
Eodem spectat quod Newtonus eandem Regulam demonstraverit synthetice in l|L|emmate secundo — id est anno 1671. Sunto – – – fluxiones invenire.
puta
Et ejusdem Propositionis Solutionem Newtonus \po/ demonstravit synthetice in Lem 2 Lib 2 Principiorum anno 1686|.| cum Propositionem prius sine Sunto quantit verbi gratia quantitates datæ a, b, c, fluentes x, y, z, fluxiones p, q, r, \&/ momenta op, oq, or. et proponatur æquatio quævis fluentes involvens, \puta/ . Fluat Et per Lemma prædictum si sola fluat x, erit momentum totius erit : si sola fluat y, momentum totius erit . si sola fluat z, momentum totius erit : si fluant omnes, momentum totius erit . Et quoniam totum semper est æquale nihilo, momentum totius est semper erit æquale nihilo. Hæc est æquatio invelvens fluentium momenta. Et si \Si/ e|E|adem dividatur per o \&/|,| habebitur æquatio involvens fluxiones. Sic Propositio, Data æquatione fluentes quotcun quantitates involvente \invenire fluxiones/ Solvitur per hoc Lemma, \et in hujus solutione est et fundatur Methodus {Flu}x/ uti di{illeg}|{a}|t{illeg}|{illeg}|{illeg} /est\ in Scholio quod eidem |Prop.| subjungitur. Et Eadem Propositio ponitur \extat/ in Epistola Newtoni ad Oldenburgum 24 Octob. 1676, et ibi dicitur esse fundamentum methodi generalis de qua Newtonus \Tractatum/ scripserat tum ante annos quin, id est anno 1671|.| {illeg} In h|H|ujus autem \autem/ Propositionis solutione habetur \exhibet/ Algorithmus|m| seu calculus|m| Arithmeticus|m| Methodi fluxionum ejusdem, ideo Algorithmus ille Newtono innotuit anno 1671.
Anglice edita in Actis Regiæ Soc. A.D. 1715, et A.D. 1712 publicatu|a|s est et ex Anglico in Latinum versa.
Introductio ad Recensionem Libri de Commercio Epistolico Collinij et aliorum.
Historia Methodi quem Newtonus \quam Newtonus Methodum/ fluxionum quam Leibnitius \methodum/ differentialem vocavit ex {illeg} Literis antiquis in Commercio Epistolico Collinij et aliorum jussu Regiæ Societatis \collecto/ anno 16 1712 editis, et eruta \& Recensione Commercij/ in Actis Philosophicis ejus|dē| Societatis anno 1715, (anno et aliquot mensibus ante obitum Leibnitij) recensitio edita
Historia Methodis fluxionum \Analyseos/ quam Newtonus Methodum fluxionum, Leibnitius methodum differentialem vocavit, in Commercio Epistolico Collinij et aliorum & Recensione Commercij contenta; quorum prius anno 16|7|12 \ex antiquis Literis/ jussu Regiæ Societatis editum fuit \collectum & editum/ anno 1712, altera anno 1715 (anno et aliquot mensibus ante {illeg} obitum Leibnitij) collectum fuit in Actis Philosophis L ejusdem Societatis edita fuit anno 1715 (anno et aliquot mensibus ante obitum Leibnitij) lucem vidit.
Historia Methodi Analyseos
Quam Newtonus Methodum Fluxionum \& Momentorum/ Leibnitius Methodum differentialem vocavit,
in Commercio Epistolico Collinij et aliorum & Recensione Commercij
contenta:
Quorum prius ex antiquis Litt|e|ris jussus Societatis Regiæ collectum fuit
|collectum fuit| et editum anno 16 1712
Altera in Actis Philosophis|c||is| ejusdem Societatis anno 1715
(anno et aliquot mensibus ante obitum Leibnitij)
lucem vidit.
Historia Methodi Analyseos
per fluxiones et momenta
a D. Leibnitio \in Commercio Epistolico/ Collinij et alio
Methodus Differentialis vocatæ
Historia Methodi Analyseos
per Fluxiones et Momenta \Augmenta, auctus/ /Differentias\
ex scriptis antiquis
eruta.
Historia Methodi Differentialis
ex antiquis Le|i|tteris
ex|in| Commercio Epistolico Collinij et aliorum ex antiquis Literis \anno 171{3}/ jussu R. Societ as tempore postquam alijs fuisset familiaris.
anno 1712 collecto editis anno 1712
et in|est| Recensione Commercij e|a|nno 1715 (anno et aliquot mensibus ante
ante {sic} obitum Leibnitij) in Actis Philosophicis ejusdem societatis
Historia Methodi Analyseos
per fluxiones & momenta a D. Newtono inventa|æ||,|m
et a D. Leibnitio Differentialem|is| nominata|æ|m
ex literis antiquis deducta.
Historia Methodi Fluxionum
extracta
extracta ex Litteris antiquis Anno 1712
In Commercio Epistolico Collinij et aliorum, jussu Regiæ Societatis editis
editis anno 1712 \jussu R. Societatis editis/
et {illeg} Anno 1715 (anno et aliquot mensibus ante obitum Leibnitij)
et in Recensione Commercij in Actis Philosophicis ejusdem \ejus{illeg}/ Societatis
explicatis.
Historia Methodi fluxionum
composita
ex Commercio Epistolico Collinij et aliorum Anno 1712 jussú Regiæ Societatis {illeg}|co|llecto
et ex Recensione Commercij Anno 1715
(anno et aliquot mensibus ante obitum Leibnitij)
in Actis Philosophicis ejusdem Societatis
edita.
Historia methodi fluxionum et momentorum
ex|in| Commercio Epistolico Collinij et aliorum
et Recensione Commercij
tradita:
contenta:
Quorum prius jussu Regiæ Societatis
ex antiquis Litteris collectum fuit
Anno 1712.
Altera in Actis Philosophicis ejusdem Societatis
Anno 1715
(anno et aliquot mensibus ante obitum Leibnitij)
lucem vidit.
Historia methodi Fluxionem | Differentialis
In Commercio Epistolico et Recensione Commercij
contenta:
Quorum prius jussu R. Societatis editum fuit
Anno 1712
Altera in Actis Philosophicis ejusdem Societatis
Anno 1715
(Anno et aliquot mensibus ante obitum Leibnitij)
lucem vide|i|t.
Epistola|æ|rum Leibnitij ad Oldenburgium \datæ sunt/ 3 Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij, \&/ 8 Iunij 1673; 15 Iulij & 26 Octob. 1674; 30 Mar. 26 Apr. 2{illeg}|0| Maij, 11|2| Iul. & 28 Decem 1675; 12 Maij, 27 Aug & 18 Novem 1676; 21 Iun. & 12 Iulij 1677 datarum \& harum omnium/ Autographa adhuc asservantur si duas tantum excipias 27 Aug. & 18 Novem 1676 scriptas et in tertio operum Wallisij volumine impressas ubi etiam eæ 15 Iul. & 26 Octob. 1674; 12 Iul. & 28 Decem 1675 & 21 Iun. & 12 Iul. 1677 leguntur. Harum etiam septendecim Epistolarū Apographa (si tertiam et ultimas quin excipias) extant in libris antiquis Epistolicis Regiæ Societatis Num 6, pag 35, 34, * 101, 115, 137 & No 7, pag 93, 110, 213, 235, 149, 189. {illeg} Et
Setentiam {sic} futilem voce quia fundavit \Iudex/ methodos \collocas/ in characteristica; & fictam quia finxit literas punctis notatas primum {b}{illeg} vidisse \publicatas fuisse/ in tertio{illeg} volumine Operum Wallisij Et Newtonū pro secundis differentijs Regulam falsam dedisse \& Newtono rectam methodum differentiandi differentialia non innotuisse longo/, cum tamen literæ punctis notatæ appa lucem |vide| in secundo Volumine \pag / quod anno 1693 \fuissit familiaris/, & Newtonus in eodem val Regula Newtoni pro secundis differentijs in eadem pagina \ejusdem Volumine/ impressa fuit et est verissima.
To the Rt Honble the Lords Commrs of his Mats Treary {sic}
May it pl. yor Lordps
\It being three years since the Pix was tryed &/ There having be \been/ coyned since the last tryal of the Pix above seventeen hundred thousand pounds I humbly pray that the \another/ /a\ triall of the Pix \of these moneys/ may be appointed this I humbly pray that a this summer.
P{illeg} Et methodus \res/ longe antea a Wallisio judicata sit | fuit Leibnitio & Menkenio tum non mussitantibus.
Quæstio tota ad Epistolas antiquas referri debet.
Vt Eq Commercium Epistolicum postpone
Eodem deni spectat 171|67|4 scripsit Leibnitius ad Oldenburgum se seriem numerorum rationalium invenisse quorum summa exacte æquaretur circulo et eadem methodo \eadē methodo valorem/ Arcus cujuslibet cujuslibet cujus sinus datur \eadem methodo/ valore exhiberi potes|sse|t licet ratio ejus ad integram circumferentiam non innotescat|r|et \et postquam hanc seriem ab Anglis his acceperat,/: set|d| anno \tamen/ 1676 postulavit ab Oldenburgo ut is Demonstrationem illius seriei \ej{ic}{illeg}{a}m/, id est Methodum inveniendi postu impetraret a Collinio et ad se mitteret. neque \unquam/ postea seriem illam \sibi arrogabat/ esse suam prætendebat \& non ne amplium|s| seriem illam sibi arrogavit/. [Sed et seriem {illeg}|a|nno 1676 seriem se habe scripsit \D. Leibnitius misit/ ad Oldenburgum se \Newtonum per Oldenb./ seriem hanc pro circumferentia circuli &c \&/ anno 1682 eandem edidit in Actis eruditorum ut suam, celato Commercio suo cum Oldenburgio a quo seriem illam bis acceperat; [primo per literas 15 Apr. 1675 datas, deinde in Apographo Epistolæ Col Gregorij inter Excerpta Gregorij Iun. 24 1676 ad se misse|o|,|]| Tandem vero jus summ in seriem illam renunciari \a Gregorio inventam fuisse agnoscere/ coactus est. Nam in Epistola ad Cometissam de Kilmansegg ve hac re verba vaciens: Inventum est, inquit, postea quod Gregorius quidam eandem \etiam/ seriem seriem quam ego me{illeg} inverat: sed hoc didici tarde. Et similiter cum D. Leibnitius elementa methodi differentialis primum ederet, celabat Commercium suum cum Oldenburgio hac de re celabat.] Sed et Sit Porro \Quinetiam/ \Leibnitius/ seriem pro Arcu \inveniendo/ ex Tangente data quam Leibnitius \Leibnitius bis ab Oldenburgio acceperat &/ anno 1682 edidit in Actis eruditorum ut suam, celato commercio suo cum Oldenburgio a quo eandem bis acceperat, tandem \tandem vero/ a Gregorio inventam fuisse tandem agnoscere coactus est. Nam in Epistola sua ad Dominam \Cometissam de/ Kilmansegg hac de re verba facians: Inventum est, inquit, postea, quod Gregorius quidem eandem etiam seriem invenerat; sed hoc didici tarde. Et similiter cum D. Leibnitius elementa methodi differentialis primum edidit commercium suum cum Anglis hac de re celabat.
Eodem deni spectat quod D. Leibnitius seriem quam ab b pro circulo arcu inveniendo ex tangente data, \Leibnitius/ anno 1682 ut suam edidit, non obstante quod eandem ab Oldenburgo bis acceperat. Et quod seriem pro arcu inveniendo ex sinu dato, se invenisse in Literis ad Oldenburgij|u|m 26 Octob. 1674 datis affirmabat, licet methodum inveniendi tunc non habeba|re|t sed Literis ad Ol 12 Maij ad 1676 ad Oldenburgium datis eandem \eni{illeg}e/ rogare|ba|t|.| a Collinio
|①| Historia Methodi Fluxionum et Methodi Differentialis ex Epistolis antique|i|s /Præfato\[2]
Concessus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca anno 1712 imprimi cura{illeg}|v|i{n}|t|t, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum vero D. Leibt|n|itius \Viennæ agens/ huic Libro minime respondere{illeg}|t|tis Sed ad Quæstiones Metaphysicas alias ad hanc rem nihil spectantes conf\{ug}/eret \& sine fine tractandas proponerent/, et ejus amici adhuc rixentur: visum est hunc Librum una cum ejus Recensione quæ in Transactionibus Philosophicis initio anni 1715 impressa fuit, in lucem iterum iterum mittere, ut Historia vera ex antiquis monumentis deducta sepositis \abs/ rixis ad posteros \abs rixis/ perveniat, & \sic judicantibus Mathematicis/ finis imponatur huic controversiæ. /Nam res non digna est de qua ulterius diss{p}utetur.\
Epistolæ D. Leibnitij ad Oldenburgium scriptæ quæ hic imprimuntur,[3] datæ sunt 3 Feb. 20 Feb. 30 Mar. \26 Apr./ 2{illeg}|4| Maij, & 8 Iunij 1673; 15 Iulij & 26 Octob. 1674; 30 Mar. 20 Maij, 12 Iulij, 28 Decem. 1675; 12 May {sic}, 27 Aug & 18 Novem 1676; 21 Iunij & 12 Iulij 1677. Et hæ omnes Epistolæ, si tertiam & ultimas quin excipias, descriptæ extant in libris antiquis epistolicis Regiæ Societatis No 6, pag. 35, 34, *, 101, 115, 137, & No 7, pag. 93, 110, 213, 235, 149, 189. Et omnium etiam autographa asservantur, si duas tantum excipias 27 Aug. & 18 Novem. \1676/ scriptas & in tertio operum Wallisij Volumine impressas. Epistolæ \præt|d|i a|c|t {illeg}|æ|/ 15 Iulij et 26 Octob. 1674, 12 Iulij et 28 Decem 1675, & 21 Iunij & 12 Iulij 1718 1677, in tertio etiam \etiam/ operum ejus volumine impressæ sunt. Et hæ omnes Leibnitij epistolæ, una cum Epistolis mutuis Oldenburgij ad Leibnitium quarum Exemplaria adhuc asservantur, perpetuum constituunt inter eos per epistolas commercium a die 3 Feb 1673 ad us mortem Oldenburgij, si modo epistolæ duæ excipiantur, \in/ quarum altera Leibnitius postulavit e|E|xcerpta ex epistolis Gregorij ad se mitti, \in/ alteram Oldenburgius cum excerptis|a| \illa/ misit Epistolæ Leibnitij versabantur circa n|N|umeros ad us 8 Iunij 1673. dein Leibnitio Geometriam addiscente, commercium aliquamdiu quievit; \intermissum est. 1/ & 15 Iulij 1674 renovatum est a Leibnitio sic scribente; Diu est quod nullas a me ha{illeg}|b|uisit literas. Commercium igitur quod Leibnitius cum Oldenburgo Collinio et Newtono habuit; hic integrum imprimitur, præter dictas duas epistolas |quæ interciderunt|. Nam Collinius & Newtonus nullum cum Leibnitio commercium præterquam per Oldenburgium habuerunt. De fide epistolarum impressarum minime dubitatur apud Anglos.
Vbi primum Commercium epistolicum lucem vidit, D. Leibnitius \Viennæ agens/, ne libro responderet, prætendit |causabatur| per biennium se librum non vidisse,[4] sed ad judicium primarij Mathematici et a partium studio alieni provocasse, cum ipse per occupationes diversas rem tunc discutere non satis posset. Et sententiam hujus Mathematici 7 Iunij 1713 datam, in alia charta maxime scurrili \defamatoria probosa/ |nimium probosa Schedula contumelijs referta| die 29 Iulij datam describi, & utram per Europam spargi curavit sine nomine vel Mathematici, vel Impressoris, vel Vrbis in qua impressa fuit; adjuvante, ni fallor, Mankenio, Mathematicus in \hoc/ scripto suo edito Bernoullium citavit tanquam a se diversum: Leibnitius vero sub finem anni 1715 citationem |illam| (nescio qua fide) delevit, et Mathematicum esse Bernoullium ipsum scripsit, {cum} tamen Benoullius judex {illeg}t \& problema\ta/ Bernoullij Analystis Anglis solvendam proposuit, & chartam illam volantem denuo dispersit, et Gallice in Hollandia imprimi curavit/ & auctoritate Bernoullij amicos suos rerum mathematicarum inscios contra \in/ Newtonum passim {illeg}ere \per literas impellere/ conatus est: cum tamen Bernoullius judex consistu non \jure nullo/ posset, nisi ipse jure|i| omni in methodum infinitesimalem prius renunciasset.
In charta illa volante 29 Iulij 1713 data,[5] Leibnitius Epistolam 15 Apr. 1675 scriptam (qua Oldenburgius series aliquot ad Leibnitium misit, et inter alias seriem Gregorij quam Leibnitius postea ut suam edidit,) suspectam reddere conatus est; dicendo Tale quiddam|, inquiens,| Gregorium habuisse ipsi Angli et Scoti, Wallisius, Hookius, Newtonus & junior Gregorius ultra triginta annos sex annos ignoraverunt, & Leibnitij esse inventum crediderunt. Verum hæc Epistola in Libro epistolico Regiæ Societatis asservata, ut et Epistola autographa Leibnitij se series missas accepisse agnoscentis, cum ijsdem Epistolis in Commercio editis, coram Comite de Kilmansegg|,|e{u}s Abbate de Comitibus, Ministris aliquot publicis exterorum Principum, & alijs exteris non paucis, Anno 1715 in domo Regiæ Societatis collatæ sunt, & Impressio\nis fides/ probata: Sed et Leibnitius ipse anno proximo in Epistola sua ad Come|i|tissam de Kilmansegge{illeg} 18 Apr. data,[6] idem agnovit, narrando qu{illeg}d \dum narrat, at ut/ cum ipse de serie quam pro circulo invenerat, ad Oldenburgium scriberet (vizt per Epistolas 15 Iulij & 26 Octob. 1674;) Oldenburgius respondere|i|t (vizt 8 Decem 1674)[7] Newtonum quendam Cantabrigiensem jam ante similia dedisse non solum pro circulo sed etiam pro omni figurarum \aliarum/ genere et ipsi mitt|s|ere|i|t serierum ✝ [8] specimina. His verbis Leibnitius agnoscit se Epistolam Oldenburgij 15 Apr. 1675 accepisse. Nam specimina illa erant in hac Epistola. Et in eadem erat series Gregorij, ut in Commercio Epistolico videre licet.[9] Sed pergit Leibnitius. Hoc non obstante, ait, series mea \mea/ satis laudata erat fuit per Newtonum ipsum. Postea inventum est Gregorium quendam eandem etiam seriem invenisse: sed hoc didici tarde. Hæc Leibnitius. Literas utiqꝫ|u|e multa fruge Algebraica refertas acceperat, sed tunc præter ordinarias curas Mechanicis imprimis negotijs distractus non potuit examinare series quas miserat Oldenburgius miserat, ac cum suis comparare (ut ipse tunc rescripsit) \neque unquam comparavit./ Et Newtonus, Wallisius, & junior Gregorius, hanc seriem a Gregorio seniore ad Collinium & ab Oldenburgio ad Leibnitium fuisse missam,[10] per ea tempora ignorarunt.
Contra fidem Epistolarum in Commercio editarum scripsit insuper Leibnitius, quod Arbitrorum Consessum a R. Societate constitutum omnia edidissent quæ contra ipsum facerent, omnia omisissent quæ contra Newtonum:[11] et præterea per Epistolam 25 Aug. 1714 ad D. Chamberlain datam,[12] postulavit ut Societas Regia Epistolas nondum editas ad ipsum mitterent. Nam cum Hannoveram, inquit, rediero, possum etiam in lucem immittere Commercium aliud Eps|i|stolicum, quod Historiæ Literariæ inservire possit; et Literas quæ contra me allegari possunt, non minus publici juris faciam, quam quæ pro me faciunt. Hæc Leibnitius. Sed omnes inter ipsum et Oldenburgium Epistolæ, quatenus ad hanc rem spectant, continua serie jam ante in Commercio edito impressæ sunt, præter duas quæ non extant \(uti jam dictum est)/, et nullius est momenti videntur.
Attamen ut accusationem suam probaret \confirmaret/, scripsit Leibnitius sub finem anni 1715, in Epistola sua prima \per Galliam/ ad Abbatem de Comitibus[13] \per Galliā missa/ quod in secundo ejus in Angliam itinere Collinius ostend\er/it ipsi partem Commercij sui, in qua Newtonus agnoscebat {illeg}ignorantiam suam in pluribus, dicebat (inter alia) quod nihil invenisset circa dimensiones Curvilinearum quæ celebrantur præter dimensionem Cissoidis; sed Consessus hoc totum suppressit. Et newtonus in Epistola sua ad |dictum| Abbatem 26 Feb. 171, respondit hoc non fuisse omissum sed extare in epistola sua ad Oldenburgium 24 Octob 1676 missa,[14] et impressum fuisse in Commercio Epistolico pag. 74. lin. 10, 11. Et subinde Leibnitius in Epistola sua proxima ad Abbatem de Comitibus Apr. 9, 1716[15] agnovit se errasse; sed, inquit, exemplum dabo aliud. Newtonus in una epistolarum ejus ad Collinium, agnovit se non posse invenire magnitudinem sectionum secundarum (vel segmentorum secundorum) sphæroidum & corporum similium, sed Consessus hunc locum vel hanc Epistolam in Commercio Epistolico minime edidit. Newtonus autem in Observationibus suis quas in hanc Leibnitij epistolam scripsit, respondit|;|[16] quod s|S|i Concessus hoc omisisset, recte omnino fuisset, |omiss{illeg}|ū| fuisse;| cum hujusmodi cavillationes ad Quæstionem de qua agitur nil spectent; sed |attamen| \sed/ quod Consessus|m| hoc non {illeg} misit \minime omississe {sic}:/ Collinius in Epistola ad D. Gregorium 24 Decem 1670, et in altera ad D. Bertet 21 Feb. 1671[17] (utris impressis in Commercio p. 24, 26) scripsit quod methodus Newtoni se extenderet ad secunda solidorum segmenta quæ per rotationem generantur. Et Oldenburgius idem, scripsit ad Leibnitium ipsum 8 Decem. 1674, ut videre est in Commercio, pag. 39.
Cæterum Leibnitius in prima sua ad Abbatem de Comitibus epistola[18] scripsit, eos qui contra ipsum scripsissent (id est Con sessus|m| a Regia Societate constitutus|m|) candorem ejus aggressos essent per interpretationes duras & male fundatas; et \illos/ voluptatem non habituros esse videndi Responsa ejus ad pusillas rationes eorum qui ijs tam male utuntur. Interpretationes illæ nullius quidem sunt authoritatis, nisi quam ab Epistolis derivant: at male fundatas esse Leibnitius nunquam ostendit.
Subinde vero Newtonus in prima sua ad Abbatem Epistola, 26 Feb. 171,[19] ita rescripsit. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse |res| facta|s| con \re/futare silentium suum hac in re excusat; allegando impræsentia \prætexens/ se librum non|dū| vidisse, & otium illi non esse ad examinandum, sed se orasse Mathematicum celebrem ut hoc negotium in se susciperet. — Vtitur & novo prætextu ne respondeat, dicendo quod Angli qui Commercium ediderunt voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes; et proponendo disputationes novas philosophicas ineundas, & Problemata solvenda: quæ duo ad rem nil spectant.[20]
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 data,[21] & per Galliam in Angliam missa, pergebat se excusare ne respondeat, dicendo. Vt operi contra me edito sigillatim respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præte{illeg}|r|itorum, quorum perparvum reminiscor; examinand{illeg}|{æ}| erunt veteres epistolæ quarum plurimæ sunt perditæ, præterquam quod maxima ex parte non conservari m|M|inuta mearum, & reliquæ sepultæ sunt in maxima|o| chartarum acervo quem non possum sine tempore et patientia discutere. Sed otium minime mihi suppetit, alijs negotijs alterius prorsus generis occupato. Hæc Leibnitius.
Attamen post ejus mortem (qua contigit proximo mense Septembri,) in Elogio ejus quod in Actis Eruditorum pro mense Iulio anni 1717 impressum fuit, amici ejus scripserunt eum Commercio Epistolico Anglorum aliud quoddam suum, idem ampliu{m}|s|, opponere decreve{illeg}t|isse|; et paucis ante obitum |diebus| Cl. Wolfio significasse se Anglos famam ipsius lacessentes reipsa refutaturum: quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus inexpectatum, et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum nihil quicquam affine habens. Hæc illi. Verum ex jam dictis patet eum aliud aliquod quoddam \nullum/ cum Oldenburgio Commercium Epistolicum non habuisse. Et inventum novum his nihil affine habens, ad rem nihil spectat. Missis|, egrorum| somnijs, Quæstio tota ad Epistolas antiquas referri debet. Et hæc Quæstio est secundum compilatores Actorum Leipsiensium) Vtrum Leibnitius sit inventor methodi de qua disputatur, & "pro Differentijs igitur Leibnitianis Newtonus adhibet semper [ex quo usus est hac methodo] adhibuit fluxiones, quemadmodum Honoratus Fabrius motuum progressus Cavallerianæ methodo substituit." Quæritur, non quis methodum totam invenit (nam tota nondum inventa est:) sed quis methodum invenit quatenus in scriptis a Newtono editis habetur.
Ad hanc Quæstionem spectat quod D. Wallisius Professor Oxoniensis celeberrimus, Propositionem primam libri de Quadraturis, exemplis inveniendi fluxiones primas et secundas illustratam edidit|er||it| anno 1693 in volumina secundo operum suorum pag. 392. [Et hæc fuit Regula omnium prima quæ lucem vidit pro fluxionibus secundis tertijs, quartis, cæteris in infinitum inveniendis. Est Regula verissima & optima.] Eandem Newtonus demonstravit syntheticè in Lemmate secundo Libri secundi Principiorum anno 1686: cum Propositionem sine demonstratione prius posuisset in Epistola ad Oldenburgium 24 Octob. 1676 scripta, & ibi significasset eandem esse fundamentum methodi generalis de qua scripserat tum ante annos quin, id est anno 1671. \☉/ \☉/ Sunto quantitates datæ a|,|b|,|c; fluentes x, y, z; fluxiones p, q, r; & momenta op, oq, or: et proponatur æquatio quævis fluentes involvens, \puta/ . Et per hoc Lemma \prædictum/, si sola fluat x, erit momentum totius ; si sola fluat y erit momentum totius ; si sola fluat z, erit momentum totius ; si fluant omnes, erit momentum totius . Et quoniam totum \semper/ est æquale nihilo, erit momentum totius æqualis >nihilo. Dividatur \momentum/ totius|um| per momentum o, et prodibit momentum totius æquale nihilo. Dividatur momentum totius per momentum o et prodibit æquatio quæ ex fluentibus dat fluxiones, vizt . Exhibet igitur hoc Scholium \Lemma/ solutionem Propositionis hujus: Data æquatione fluentes quott|c|un quantitates involvente fluxiones invenire. |Per| H|h|ujus Propositiones solutione|m| inveniuntes|ur| omnes fluxiones (primæ sundæ tertiæ &c) utin Propositione prima Libri de quadraturis ostenditur, et in eadem \solutione/ habetur \calculus et/ Algorithmus \seu calculus Arithmeticus/ methodi fluxionum.
Eodem spectat quod Propositio secunda libri de Quadraturis extet soluta in Analysi per series quam Barrovius anno 1699 {illeg}|a|d Collinium misit pag. 19. Nam hæc Propositio pendet a Propositione prima ejusdem libri, ideo Propositiones duæ primæ hujus Libri de Quadraturis Newtono innotuere anno 1669. Propositio autem tertia et qua\r/ta sunt exempla tantum Propositionis secundæ ut ibi dicitur ideo |et propterea methodus fluxionum quatenus in Propositionibus quatuor primis libri de Qua{illeg}|dra|turis habetur, Newtono innotuit anno 1669.| Eodem spectat quod Newtonus in Analysi per series, a Barovio anno 1669 ad Collinium missa, \pag 14/ exposuit fluentes per areas \uniformiter fluentem per Abscissam ductam in unitatem/ fluxiones per Ordinatas & momenta per Ordinatas ductas in momentum temporis o|[|, \& pag 19/ docuit ex areis assumptis æquatione \abscissam/ aream \curvilineam, et aream rectam/ involvente invenire Ordinatis|a|m. Et inde facile eru habetur P datur Propositio prima Libri de Quadraturis id est ex fluentem \æquatione involvente/ invenire fluxionem]. et pag. 19 docuit ex æquatione areas|m| curviliam \Abscissam & Abscissam in unitatem ductam &/ involvente invenire Ordinatam, id est, ex æquatione fluente s|m| \duas,/ involventes \involvente/ scilicet aream sub Abscis rectangulam sub abscissa & unitate, & aream curvilineam, involvente inven{re} involvente invenire fluxionem, sive ex æquatione f \fluentem/ uniformiter fluentem & fluentem alteram involventem, fluxionem alterius invenire sive ex æquatione fluentes duas involvente invenire fluxionem unius quarum una fluit uniformiter invenire fluxionem alterius. Hæc Propositio ejusdem est generis cum Propositione prima Libri de Quadraturis & Newtono innotuit anno 1669.
Eodem spectan|t| quod W{illeg} Propositio secunda Libri de Quadraturis quæ a Primo extet soluta in Analysi per series soluta qe|u|am Barrovius anno 1669 ad Collinium misit pag. 19. Nam hæc Propositio pendet a Propositione prima ejusdem Libri, ideo hæ duæ Propositiones Newtono innotuere anno 1669. In hujus Propositionis solutione habetur Algorithmus methodi momen differentialis.
Eodem spectat quod Propositionem quintam libri de Quadraturis Wallisius edid\er/it anno 1693 in secundo operum suorum Volumine pag 391. Et Newtonus eandem inven\er/it per Methodum fluxionum, uti patet per ejus Epistolam Octob 24, 1676 ad Oldenburgum missam. Hac Propositione quadrantur Figuræ accurate et Geometrice si fieri potest. Et hoc artificium Newtono innotuit anno 1669, uti affirmatur in Analysi per series quam Barrovius eo anno ad Collinium misit, imo et annis aliquot antequam Mercatoris Logarithmotechnia prodijt, testib. Barrovio \et Collinio/ in Epistola Collinij ad D. Strode. Atqui Propositio illa quinta pendet a Propositionibus quatuor pr{illeg}|i|oribus. Ideo methodus fluxionum, quad|t|enus continetur in Propositionibus quin primis Libri de Quadraturis, Newtono innotuit annis aliquot antequam prodiret Mercatoris Logarithmotechnia, id est, anno 1666 aut antea. |Id quod testatus est etiam Wallisius in Præfatione ad Operum suorum Volumen primum.|
Eodem spectat quod in Libro de Analysi per Series, Fluxiones, ac Differentias, anno 1711 a Ionesio edito,[22] \pag. 38/ extet Fragmentum per Epistolæ Newtoni ad Collinium Nov. 8, 1676 datæ, his verbis. Nulla extat Curva cujus Æquatio ex tribus constat terminis, in qua, licet quantitates incognitæ se mutuo afficiant & indices dignitatum sint surdæ quantitates (v.g. ubi x designat basin; y ordinatam; λ, μ, σ, τ indices dignitatum ipsarum x et y; & a, b, c quantitates cognitas una cum signis suis + & −) nulla, inquam, hujusmodi est Curva, de qua, an quadrari possit necne, vel quænam sint figuræ simplicissimæ quibuscum comparari possit, sive sint Conicæ Sectiones, sive aliæ magis complicatæ, intra horæ Octantem respondere non possim. Deinde methodo directa {illeg}|e|t brevi, imo methodorum omnium brevissima generalium brevissima, eas comparare queo. Quinetiam si duæ quævis figuræ per hujusmodi æquationes expressæ proponentur, per eandem Regulam, eas, modo ca|o|mparari possint, comparo. — Eadem methodus æquationes quatuor terminorum alias complectitur, had|u|d tamen adeo generaliter. Hactenus Newtonus. Hæc autem fiunt per Propositionem decimam Libri de Quadraturis, & ab {sic} Methodo Fluxionum fieri non possunt: indicant vero methodum quadrandi curvilineas in Libro de Quadraturis expositam, & methodum fluxionum in qua methodus altera fundatur, eous promotam|s| fuisse ante 8 Novem. 1676.
Eodem spectat etiam quod in Epistola Newtoni ad Oldenburgium 24 Octob. 1676[23] descriptæ habentur Ordinatæ Curvilinearum, quarum collationes cum Conicis sectionibus Newtonus in Catalogum tunc olim retulerat, id est anno 1671 aut antea. Nam anno 1676 Newtonus annos quin{illeg}|q|ue ab hac methodo promovenda abstinuerat, ut ipse ibidem refert. Earundem Curvilinearum et eodem ordine & modo descriptarum Collationes cum Conicis Sectionibus, ponuntur in Tabula posteriore duarum quæ in Scholio ad Propositionem decimam libri de Quadraturis habentur: ideo Tabula illa composita fuit, et methodus quadrandi Curvilineas eous producta, anno|i|s minimum quinque ante ante annum 1676. Id quod abs methodo Fluxionum fieri non potuit. Propositio decima pendat a Propositione|i|bus quinta, sexta septima, & octava, \& nona/ Propositione Libri de Quadraturis, ideo Propositiones primæ decem hujus libri Newtono innotuere anno 1676
Eodem deni spectat quod Newtonus in Epistola sua prædicta ad Oldenburgium 24 Octob. 1676 data, ubi Problematum genera quædam nominasset quæ per methodum suam solverentur \et methodum Tangentium Slusij inde fluere, id absque æ et methodum Tangentium Slusij inde fluere id absque æquationum Reductione dixisset;/ subjungit: Fundamentum harum operationum, satis OBVIVM quidem, quoniam jam non possum explicationem ejus prosequi, sic potius celavi. 6accdæ &c. Celavit igitur ut obvium, ne subriperetur. Quàm vero fuit obvium et quàm facile subripi potuit, sic patebit. Gregorius scripsit ad Collinium 5 Sept. 1670[24] se ex Barrovij Methodis Tangentes ducendi invenisse methodum generalem et Geometricam ducendi Tangentes ad omnes Curvas sine calculo. Slusius se ejusmodi methodum Tangentium habere mense Septembri \Octobri/ 1672 scripsit ad Oldenburgum. Et Newtonus 10 Decem. 1672 scripsit ad Collinium in hæc verba.[25] Ex animo gaudeo D. Barrovij nostri Reverendi Lectiones Mathematicas exteris adeo placuisse, ne parum me juvat intelligere eos [Slusium et Gregorium] in eandem mecum incidisse ducendi Tangentes methodum, &c. Et subinde Newtonus in eadem Epistola methodum {illeg}|s|uam ducendi Tangentes descripsit, & addidit hanc methodum esse partem vel corollarium potius methodi \suæ/ generalis solvendi abstrusiora Problemata, et non hærere ad quantitates surdas. Epistolas totas Gregorij et Newtoni habes infra ex|in| Commercio Epistolico, et earum Exemplaria Oldenburgius 26 Iunij 1676 misit ad Leibnitium[26] inter Excerpta ex Gregorij Epistolis; & Leibnitius incidit in Prælectiones Barrovij in Anglia mense Octobri anni 1676, ut ipse asserit in Epistola sua ad Abbatem de Comitibus 9 Apr. 1716.
Sunto jam, ut in Epistola Newtoni, quantitates datæ {illeg} a, b, c, Abscissa x, Ordinata y. , Ordinata , et linea curva AC; & proponatur æquatio quævis quantitates illas duas fluentes x et y involvens, puta , ut in eadem Epistola; et ducenda sit recta CD quæ Curvam tangat in C., & Abscissam utrin productam secat in D. Multiplicetur omnis æquationis terminus per indicem dignitatis {illeg}|x|; & productum divisum per y|x| (videlicet −2xx ) vocetur R. Multiplicetur omnis æquationis terminus per indicem dignitatis y; et productum, divisum per y (videlicet ) vocetur S. Et per Regulam in Epistola illa traditam Newtoni traditam, erit subtangens , vel potius , propterea quod AB et BD ducantur ad partes contrarias. Et hæc est Regula ducendi Tangentes quam Newtonus in Epistola illa posuit, ut partem aliquam vel specimen vel Corollarium Methodi suæ generalis. Methodus vero tota ex hac ejus parte, \vel exemplo/ et Propositio generalis ex hoc ejus Corollario sic deducitur.
Agatur, secundum methodum Tangentium Barrovij & Gregorij, Ordinata nova EF, priori BC proxima, & compleatur parallelogrammum BCGE, et pro differentijs vel momentis BE et GF, scribantur p et q: et erit FG ad CG ut est CB ad BD, id est, q ad p ut y ad BD, seu , et facta reductione, . Hæc æquatio, ubi duæ tantum sunt fluentes, involvit earum differentias. &|Et| ubi plures sunt fluentes, operatio similis ad omnes applicata, dabit æquationem involventem omnium momenta differentias. Et Theorema hocce, quod sic ex Newtoni Epistola consequitur, illud omne comprehendit quod Leibnitius ad Newtonum Anno 1677 rescripsit, ut et illud omne quod in Actis Eruditorum Anno 1684 in lucem edidit. |Nam solutionem comprehendit Propositionis primæ libri de Quadraturis.|
|+☉| +☉ Newtonus uti Theoriam \refractionis &/ colorum \luens/ uti invenit anno ineunte 1666, ac de eijsdem Tractatum habebat compositum Anno 1671, & Tractatum de seriebus eo anno scripsit ut ut utrum simul ederet. Sed cum aliqua \3/communicasset \1/de \2/coloribus, subod|r|tæ per diversorum. Epistolas crebræ interpellationes crebræ epistolæ ipsum prorsus a consilio detinuerunt \quietus uti {anantem}./ [et effecirunt ut is scripsum argueret imprudentiæ quod umbram captando, eatenus perdiderat quietem suam rem prorsus substantialem] Cæterum in Tractatu illo, cum methodo serierum conjuncto erat Methodum|s| fluxionum. Et \ex/ hoc Tractatu Librum de Quadraturis extr circa annum 1676 extraxit. Ac tandem anno 1704 cum Librum \inventa sua/ de Col Luce et Coloribus in lucem ederet, {illeg} Edidit etiam hunc Tractatum \librum/ de Quadraturis.
Et his præmissis legatur jam Recensio Commercij Epistolici & consulatur Comercium ipsum sicubi de factis dubitatur.
+☉ Eodem denique spectat quod Leibnitius subpeterie ab per Literas 12 Maij 1676 peterat \petiit/ ut Oldenburgius seriem demonstrationem serierum duarum Newtoni ad se \postulariet poterit \id est methodum easdem inveniendi in Analysi per series descriptam/ a Collinio peteret & ad se/ mitteret quam Collins per demonstrationem \sub/ intellilligens methodum eusdem, inveniendi \in Analysi per series descrips{a}t/ & quod \sub finem/ mensis Novembr \Octobri {illeg}/ ejusdem anni \Leibn./ {lig}|vid|erat\it/ Epistolam Newtoni ad Oldenburgū 24 Octob. {illeg} datam, ubi Newtonus Analysin illam sic describit: Eo ipse tempore — illstraveram diversis seriebus; Et \deni/ quod Leibnitius \Collinius/ eodem tempore ostendit Leibnitio [Recueil. p. 5, 33, 56, ] Epistolas plures Newtoni |&| Gregorij, et Colli et aliorum, quæ \præcipue/ de seriebus præcipue scriptæ erant. [Recueil p. 5, 33, 56] Et \quod/ nondum probatum \fuit/ est quod D. Leibnitius eo tempore non vidit hanc Analysis|n| in manibus Collinij.
+☉ Eodem deni spectat quod Collinius Leibnitius per Literas 12 Maij 1676 petijt ut Oldenburgius demonstrationem serierum duarum Newtoni, id est methodum easdem inveniendi in Analysi per series descriptam, postularet a Collinio & ad se mitteret: et quod sub finem mensis Octobris ejusdem anni Leibnitius vid\er/it \in manibus Collinij/ Epistolam Newtoni ad Oldenburgium 24 Octobris ejusdem datam, ubi Newtonus Analysin illam sic describit: [Eo ipso tempore — illustraveram diversis seriebus:] {ac} denique quod \Iam vero/ Collinius uti eodem tempore ostendit Leibnitio Epistolas plures Newtoni Gregorij et aliorum quæ \præcipue/ de seriebus præcipue scriptæ erant [Recueil. p. 5, 33, 56.] & nondum probatum fuit quod Leibnitius eo tempore non vid\er/it Analysin {O} illam Newtoni per series
[Et his præmissis legatur jam Recensio Commercij Epistolici, & consulatur Commercium ipsum sicubi de factis dubitatur.] Et \non/ scripserit pro pro dx \et/ dy et dz pro ox \o/ ov, oy, et pro .
Et his præmissis legatur jam Recensio — —
ubi Newtonus \exponit fluenta|e|s per areas et/ utitur Symbolis l, v, y &c pro fly|u|xionibus earum & symbolis o, ov, oy pro mom
vbi Newtonus \exponit fluentes per areas &/ utitur symbolis o, ov, oy, eodem sensu quo Leibnitius postea usus est symbolis dz, dy, dx, \dv,/ .] vb{illeg}|i| fluet|n|tu fluen symbola o, ov, oy, idem significant cum symbolis quib dz dy, dx, dv, quas|æ| Leibnitius postea adhibuit.
et seriem Gregorij s|q|uam \anno 1682/ pro sua edidit Gregorium \quendam/ invenisse tarde didicit. Et his præmissis legatur jam Recensio Commercij Epistolici, & consulatur Commercium ipsum \sic/ ubi de factis dubitatur
Historia Methodi Fluxionum et Methodi Differentialis ex Epistolis antiquis erictæ. Præfatio.[27]
Consessus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca Anno 1712 imprimi curavit, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum verò D. Leibnitius huic Libro minime responderet, sed Quæstiones Metaphysicas alias ad hanc rem nihil spectantes, & sine fine tractandas proponeret, et ejus amici \editores Actorum Lipsiensium & similas eorum amici/ adhuc rixi|e|ntur: visum est hunc Librum una cum ejus Recensione quæ in Transactionibus Philosophicis \ac Diario Literario/ Anno 1715 (anno et aliquot \septem vel octo/ mensibus ante obitum D. Leibnitij) impressa fuit, in lucem iterum mittere, {illeg}|u|t Historia vera ex antiquis monumentis deducta ad posteros abs alijs disputationibus \illorum rixis |rixis ac disputationibus ad rem nil spectantibus|/ perveniat, et sic finis imponatur huic controversiæ. Nam \depulso plagia|j|{illeg} crimine/ res non digna est de qua ulterius disputetur|.|, modo crimen plagiarij depellatur
Epistolæ D. Leibnitij ad Oldenburgum scriptæ quæ hic imprimuntur, datæ sunt 3 Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij, & 8 Iunij 1673; 15 Iulij & 26 Octob. 1674; 30 Mar. 20 Maij, 12 Iulij & 28 Decem. 1675; 12 Maij, 27 Aug. & 18 Novem 1676; 21 Iunij & 12 Iulij 1677. Et harum omnium Apographa (si tertiam et ultimas quin excipias) extant in libris antiquis epistolicis Regiæ Societatis No. 6. pag. 35, 34, *, 101, 115, 137; & No 7, pag. 93, 110, 213, 235, 149, 189. Et omnium etiam Autographa asservantur, si duas tantum excipias 27 Aug. & 18 Novem. 1676 scriptas & in tertio operum Wallisij volumine impressas: ubi etiæ|a||m| {illeg}|h|æ 15 Iulij & 26 Octob. 1674, 12 Iulij & 28 Decem. 1675 & 21 Iunij & 12 Iulij 1677 leguntur. Et hæ omnes Leibnitij Epistolæ una cum Epistolis mutuis Oldenburgij ad Leibnitium quarum exemplaria adhuc asservantur, perpetuum constituunt inter eos per Epistolas commercium a die 3 Feb. 1673 ad us mortem Oldenburgij, si modo epistolæ duæ excipiantur, in quarum altera Leibnitius postulat Excerpta ex epistolis Gregorij ad se mitti, in altera Oldenburgius excerpta illa misit. Epistolæ Leibnitij versabantur circa Numeros ad us 8 Iunij 1673: dein Leibnitio Geometriam addiscente, Commercium aliquamdiu intermissum est, et 15 Iulij 1674 renovatum est a Leibnitio sic scribente: Diu est quod nullas a me habuisit literas. |Et ab hoc tempore,| Commercium igitur quod Leibnitius cum Oldenburgio, Collinio, et Newtono habuit, \circa series et altiorem Geometriam versabatur &/ hic integrum imprimitur, præter dictas duas epistolas quæ interciderunt. Nam Collinius et Newtonus nullum cum Leibnitio commercium præterquam per Oldenburgium habuerunt. De fide Epistolarum impressarum minime dubitatur, certe non apud Anglos.
Vbi primum Commercium epistolicum lucem vidit, D. Leibnitius Viennæ agens, ne libro responderet, causabatur per biennium se librum non vidisse, sed ad judicium primarij Mathematici et a partium studio alieni provocasse, cum ipse per occupationes diversas rem tunc non satis discutere posset. Et sententiam \fictam futilem |propria nomine|/ hujus Mathematici 7 Iunij 1713 datam \in/ schedula contumelijs referta, die 29 Iulij data describi, & utram per Europam spargi curavit, sine nomine vel Mathematici, vel Impressoris, vel Vrbis in qua impressa fuit; adjuvante, ni fallor, Menkenio. Mathematicus in hoc scripto suo edito latine edito Bernoullium citavit tanquam a se diversum: Leibnitius vero sub finem anni 1715, in versione Gallica in Hollandia edita, citationem illam (nescio qua fide) omisit & Mathematicum esse Bernoullium ipsum scripsit, et \literis ad Abbatem de Comitibus alios scriptis Newtonum totis viribus aggressus est, &/ problemata Bernoullij Analystis Anglis solvenda proposuit, & chartam illam volantem denuo dispersit, et ad sententiam Bernoullij appellan{illeg}|s|{illeg} amicos suos rerum mathematicarum inscios in Newtonum per literas impellere conatus est: cum tamen Bernoullium|s| judex consistui jure nullo posset, nisi ipse jure omni in methodum infinitesimalem prius renunciasset.|;| |et \de hac/ re{illeg} longe antea judicata fuit a Wallisius contrarium judica{illeg}|m| talis \ut/ Leibitio et Menkenio tu{illeg}|m| non mussitantibus.|
In charta illa volante 29 Iulij 1713 data, Leibnitius Epistolam 15 Apr. 1675 datam scriptam (qua Oldenburgius series aliquot ad Leibnitium miserat, et inter alias seriem Gregorij quam Leibnitius postea ut suam edidit,) suspectam reddere conatus est; Tale quiddam, inquiens, Gregorium habuisse ipsi Angli et Scoti, Wallisius, Hookius, Newtonus & junior Gregorius ultra triginta sex annos ignoraverunt & Leibnitij esse inventum crediderunt. Verum hæc Epistola in Libro Epistolico Regiæ Societatis asservata, ut et hæc Epistola autographa Leibnitij se series missas accepisse agnoscentis, cum ijsdem Epistolis in Commercio editis, coram Comite de Kilmansegg, Abbate de Comitibus, Ministris aliquot publicis exterorum Principum, & alijs exteris non paucis, Anno 1715 in domo Regiæ Societatis collatæ sunt, & impressionis fides probata. Sed et Leibnitius ipse anno proximo in Epistola sua ad Comitissam de Kilmansegg 18 Apr. data idem agnovit dum narrat, ut cum ipse de serie quam pro circulo inve\ne/rat, ad Oldenburgium scriberet (vizt per Epistolas 15 Iulij & 26 Octob. 1674;) Oldenburgius responderit (vizt 8 Decem 1674) Newtonum quendam Cantabrigiensem j{illeg}|a|m a{illeg}|n|te similia dedisse non solum pro circulo sed etiam pro omni figurarum aliarum genere, et ipsi miserit serierum ✝[28]specimina. His verbis Leibnitius agnoscit se epistolam Oldenburgij 15 Apr. 1675 accepisse. Nam specimina illa erant in hac epistola. Et in eadem erant series Gregorij, ut in Commercio Epistolico videre licet.[29] Sed pergit Leibnitius. Hoc non obstante, ait, series mea satis laudata fuit per Newtonum ipsum. Postea inventum est Gregorium quendam eandem etiam seriem invenisse: sed hoc didici tarde. Hæc Leibnitius. Literas uti multa fruge Algebraica refertas acceperat, sed tunc præter ordinarias curas Mechanicis imprimis negotijs distractus non potuit examinare \series/ quas Oldenburgius miserat,[30] ac cum suis comparare, (ut ipse tunc rescripsit,) neque unquam comparavit; sed priusquam epistolam 12 Maij {illeg}|1|676 datam[31] ad Oldenburgium scripsit, oblitus est se series anno superiore missas accepsse, \et seriem quam anno 1682 pro sua edidit Gregorium quendam invenisse tarde didicit./ Newtonus autem et Wallisius et junior Gregorius, hanc seriem a Gregorio seniore ad Collinium & ab Oldenburgio ad Leibnitium fuisse missam, per ea tempora \multo magis/ ignorarunt. |Leibnitius ita Epistolam Oldenburgij seriebus refertam accepit, sed series, si fas est, credere nunquam contulit cum suis.|
Contra fidem Epistolarum in Commercio editarum scripsit insuper Leibnitius, Arbitrorum Consessum a R. Societate constitutum omnia edidisse quæ contra ipsum facerent, omnia omisisse quæ contra Newtonum. Et præterea per Epistolam 25 Aug. 1714 ad D. Chamberlain datam, postulavit \ille/ ut Societas Regia Epistolas nondum editas ad ipsum mitterent. Nam cum Hanoveram, inquit, rediero, possum etiam in lucem mittere Commercium aliud Epistolicum, quod Historiæ Literariæ inservire possit; et literas quæ contra me alligari possunt, non minus publici juris faciam quam quæ pro me faciunt. Hæc Leibnitius. Sed omnes inter ipsum et Oldenburgium Epistolæ, quatenus ad ha{illeg}|nc| rem spectant, continua serie jam ante in Commercio edito impressæ sunt, præter duas quæ non extant (uti jam dictum est), et nullius esse momenti videntur.
Attamen ut accusationem suam confirmaret, scripsit Leibnitius sub finem anni 1715, in epistola sua prima ad A\b/batem de Comitibus per Galliam missa, quod in secundo ejus per \in/ Angliam itinere Collinius ostenderit ipsi partem Commercij sui, in qua Newtonus agnoscebat ignorantiam suam in pluribus, dicebat (inter alia) quod nihil invenisset circa dimensiones Curvilinearum quæ celebrantur, præter dimensionem Cissoidis; sed Consessus hoc totum suppressit. Et Newtonus in Epistola sua ad dictum Abbatem respondit 26 Feb. 171, respondit, hoc non fuisse omissum sed extare in epistola sua ad Oldenburgium 24 Oct. 1676 missa, & impressum fuisse in Commercio Epistolico pag. 74. lin. 10, 11. Et subinde Leibnitius in Epistola sua proxima ad Abbatem de Comitibus Apr. 9, 1716 agnovit se errasse: sed, inquit exemplum dabo aliud. Newtonus in una Epistolarum ejus ad Collinium, agnovit se non posse invenire magnitudinem sectionum secundarum (vel segmentorum secundorum) sphæroidum {illeg}|et|{illeg} corporum similium, sed Consessus hunc locum vel hanc Epistolam in Commercio Epistolico minime edidit. Newtonus autem in Observationibus quas in hanc Leibnitij epistolam scripsit, respondit: Si Consessus hoc omisisset, recte omnino omissum fuisse, cum hujusmodi cavillationes ad Quæstione|m| de qua agitur nil spectent; sed Consessum hoc minime omisisse. Collinius in Epistola ad D. Gregorium 24 Decem. 1670, et in altera ad D. Bertet 21 Feb. 1671 (utris impressis in Commercio p. 24, 26) scripsit quod methodus Newtoni se extenderet ad secunda solidorum segmenta quæ per rotationem generantur. Et Oldenburgius idem scripsit ad Leibnitium ipsum 8 Decem. 1674, ut videre est in Commercio, pag. 39. Leibnitius igitur accusationem finxit.
Cæterum Leibnitius in prima sua ad Abbatem de Comitibus epistola scripsit, eos qui contra ipsum scripsissent (id est Consessum a Regia Societate constitutum) candorem ejus aggressos esse per interpretationes duras & male fundatas; et voluptatem non habituros esse per interpretationes duras videndi Responsa ejus ad pusillas rationes eorum qui ijs tam male utuntur. Interpretationes >illæ nullius quidem sunt authoritatis, nisi quam ab Epistolis derivant: at male fundatas esse Leibnitius nunquam ostendit.
Subinde vero Newtonus in prima sua ad Abbatem Epistola, 26 Feb. 171, ita rescripsit. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse |res| factas refutare Silentium suum hac in re excusat, prætexens se librum nondum vidisse & otium illi non esse ad examinandum, sed se orasse Mathematicum celebrem ut hoc negotium in se susciperet. — Vtitur et novo prætextu ne respondeat, dicens quod Angli qui Commercium ediderunt voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes; et proponend|s| disputationes novas philos{illeg}|o|phicas ineundas & Problemata solvenda: quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 26 Feb. 16 171, ita rescripsit; D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse res factas refutare
<204r>a Regia Societate constitutum) candorem ejus aggressos esse per interpretationes duras et male fundatas; et voluptatem non habituros esse videndi Responsa ejus ad pusillas rationes eorum qui ijs tam male utuntur. Interpretationes illæ nullius quidem sunt auctoritatis nisi quam ab Epistolis derivant; at male fundatas esse Leibnitius nunquam ostendit.
Subinde vero Newtonus in prima sua ad Abbatem Epistola 26 Feb. 171, ita rescripsit. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse res factas refutare Silentium suum hac in re excusat, prætexens se librum nondum vidisse, & otium illi non esse ad examinandum, sed se orasse Mathematicum celebrem ut hoc negotium in se susciperet. — Vtitur et novo prætextu ne respondeat; dicens quod Angli qui Commercium ediderunt voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes; et proponens disputationes novas philosophicas ineundas, & p|P|roblemata solvenda: quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 data, & per Galliam in Angliam missa pergebat se excusare ne respondeat. Vt operi, inquit, contra me edito sigillatim respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præteritorum, quorum perparvum reminiscor; examinandæ erunt veteres Epistolæ, quarum plurimæ sunt perditæ, præterquam quod maxima ex parte non conservavi minuta mearum, et reliquæ sepultæ sunt in maximo chartarum acervo quem non possum sine tempore et patientia discutere. Sed otium minime mihi suppetit, alijs negotijs alterius prorsus generis occupato. Hæc Leibnitius.
Attamen post ejus mortem (quæ contigit proximo mense Septembri,) in Elogio ejus quod in Actis Eruditorum pro mense Iulio anni 1717 impressum fuit, amici ejus scripserunt eum Commercio Epistolico Anglorum aliud quoddam suum, idem amplius opponere decrevisse; et paucis ante obitum diebus Cl. Wolfio significasse se Anglos famam ipsius lacessentes reipsa refutaturum: quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus inexpectatum, et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum nihil quicquam affine habens. Hæc illi. Verum ex jam dictis patet illum aliud nullum cum Oldenburgio Commercium Epistolicum habuisse. Et inventum novum his nihil affine habens, ad rem nihil spectat. Missis ægrorum somnijs, |Commercium Epistolicum quod Leibnitius, et ejus amici eludere {illeg}t{illeg} abs responso oblivioni dare conati sunt, in lucem revocare d{illeg} est, et debet, et| Quæstio tota ad Epistolas antiquas referri|.| debet. Et hæc Quæstio est (secundum Compilatores Actorum Leipsiensium,) Vtrum Leibnitius sit inventor methodi de qua disputatur, & pro Diff\er/entijs igitur Leibnitianis Newtonus adhibet semper [ex quo usus est hac methodo] adhibuit Fluxiones, quemadmodum Honoratus Fabrius motuum progressus Cavallerianæ methodo substituit. Quæritur, non quis methodum totam invenit (nam tota \methodus inversa/ nondum inventa est:) sed quis methodum invenit quatenus in scriptis a Newtono editis habetur. Nam tota methodus nondum inventas est.
✝ methodum differentialem voct|a|t quas Newtonus momenta & methodum momentorum, et quod methodus momentorum & methodus fluxionum una et eadem sit methodus. Momenta sunt partes quas Leibnitius differentias vocat, fluxiones sunt velocitates quibus partes generantur. Leibnitius In methodo Leibnitij considerantur partes, in ea Newtoni considerantur etiam velocitates. Newtoni methodus est amplior & Newt Leibnitij methodum complectitur, nisi forte \Leibnitius/ methodo inversæ aliquid addiderit. Ad hanc Quæstionem spectat \etiam/ \Eodem spectat/ quod D. Wallisius Professor Oxoniensis celeberrimus, Propositionem primam libri de Quadraturis, exemplis inveniendi fluxiones primas et secundas illustratam ediderit Anno 1693 in volumine secundo operum suorum, pag. 392. Et hæc fuit Regula omnium prima quæ lucem vidit pro fluxionibus secundis, tertijs, quartis, cæteris in infinitum inveniendis. Est Regula verissima et optima Et ejusdem Propositionis solutionem Newtonus demonstravit synthetice in Lem. 2 \Lib. 2/ Principiorum anno 1686. Sunto quantitates datæ a, b, c, fluentes x, y, z, fluxiones p, q, r, & momenta op, oq, or. Et proponatur æquatio quævis fluentes {illeg}|in||volvens,| puta . Et per Lemma prædictum, si sola fluat x, momentum totius erit ; si sola fluat y, momentum totius erit ; si sola fluat z, momentum totius erit ; si fluant omnes momentum totius erit . Et quoniam totum semper est æquale nihilo, momentum totius erit æquale nihilo. Hæc est æquatio involvens fluentium momenta. Si eadem dividatur per o, habebitur æquatio involvens fluxiones. Per hoc Lemma igitur solvitur Propositio: Data æquatione fluentes quotcun quantitates involvente fluxiones invenire: {illeg}|&| {illeg} in hujus autem solutione fundatur methodus fluxionum uti dictum est in Scholio quod eidem Propositioni subjungitur. Eadem Propositio extat in Epistola Newtoni ad Oldenburgium 24 Octob. 1676,[32] et ibi dicitur esse fundamentum methodi generalis de qua Newtonus Tractatum scripserat tum ante annos quin, id est, anno 1671. Hujus autem solutio exhibet Algorithmum seu calculum Arithmeticum Methodi ejusdem; ideo Algorithmus ille Newtono innotuit anno 1671.
✝ Ad hanc quæstionem spectat quod Leibnitius differentias &Eodem spectat quod Propositio secunda Libri de Quadraturis extet soluta in Analysi per series quam Barrovius anno 1699 ad Collinium misit,[33] pag 19 \ubi docetur Inventio Curvarum quæ quadrari possunt/. Nam hæc Propositio pendet a Propositione prima libri ejusdem; ideo Propositiones duæ primæ hujus Libri de Quadraturis Newtono innotuere anno 1669. Propositio autem tertia et quarta sunt exempla tantum Propositionis secundæ, ut ibi dicitur. Et propterea Methodus fluxionum, quatenus in Propositionibus quatuor primis Libri de Quadraturis habetur, Newtono innotuit Anno 1669.
Eodem spectat quod Propositionem quintam Libri de Quadraturis Wallisius ediderit anno 1693 in secundo operum suorum volumine pag 391. Hac Propositione quadrantur Figuræ accurate et Geometrice si fieri potest. Et hoc artificium Newtono innotuit anno 1676, uti patet per Epistolam ejus 24 Octob. ejusdem anni,[34] ad Oldenburgium missam: H{illeg} Vt et anno 1669 uti affirmatur in Analysi per series quam Barrovius eo anno ad Collinium misit:[35] Imo et annis aliquot antequam Mercatoris Logarithmotechnia prodijt, testibus Barrovio et Collinio in Epistola Collinij[36] ad D. Strode. Atqui Propositio illa quinta pendet a Propositionibus qua{t}i \quatuor prioribus. Ideo methodus fluxionum quatenus continetur in Propositionibus quin/ primis Libri de Quadraturis Newtono innotuit annis aliquot antequam prodiret Mercatoris Logarithmotechnia, id est, anno 1666 aut antea \testibus Barrovio et Collinio/. Id quod testatus est etiam Wallisius in Præfatione ad Operum suorum Volumen primum.
Ad eandem Quæstionem spectat quod in Tractata præ Libro de Analysi per Series Fluxiones ac Diffe\re/ntias, anno 1711 a Ionesio editas|o| pag. 38, extet Fragmentum Epistolæ Newtoni ad Collinium Nov. 8, 1676 datæ, his verbis. Nulla extat Curva cujus Æquatio ex tribus constat terminis, in qua, licet quantitates incognitæ se mutuo afficiant, & indices dignitatum ipsa sint surdæ quantitates (v.g. : ubi x designat basin; y ordinatam; λ, μ, σ, τ indices dignitatum ipsarum x et y; & a, b, c quantitates cognitas una cum signis suis + et −) nulla, inquam, hujusmodi est Curva, de qua an quadrari possit necne, vel quænam sint figuræ simplicissimæ quibuscum comparari possit, sive sint Conicæ Sectiones, sive aliæ magis comp{li{illeg}t{æ}}licatæ, intra horæ Octantem respondere non possim. Deinde methodo directa et brevi, imo methodorum omnium {illeg}|g|eneralium brevissima, eas comparare queo. Quinetiam si duæ quævis figuræ per hujusmodi æquationes expressæ proponantur, per eandem Regulam eas, modo comparari possint, comparo. — Eadem methodus æquationes quatuor terminorum alias complectitur, haud tamen adeo generaliter. Hactenus Newtonus. Hæc autem abs methodo fluxionum fieri non possunt: indicant vero Methodum quadrandi Curvilineas in Libro de Quadraturis expositam, et methodum fluxionum in qua methodus altera fundatur, eousque promotas fuisse ante 8 Novem. 1676.
Eodem spectat etiam quod in Epistola Newtoni ad Oldenburgium 24 Octob. 1676 \data/,[37] descriptæ habentur Ordinatæ Curvilinearum, quarum collationes cum Conicis sectionibus Newtonus in Catalogum tunc olim retulerat, id est, anno 1671 aut antea. Nam anno 1676[38] Newtonus annos quin ab hac methodo promovenda abstinuerat, ut ipse ibidem refert. Earundem Curvilinearum et eodem ordine & modo ijsdem literis descriptarum Collationes cum Conicis Sectionibus ponuntur in Tabula posteriore duarum quæ ad in Scholio ad Propositionem decimam Libri de Quadraturis habentur: ideo Tabula illa composita fuit, et methodus quadrandi Curvilineas eous producta annis minimum quin ante annum 1676. Id quod abs methodo Fluxionum fieri non potuit. \Iam vero/ Propositio decima pendet a Libri de Quadraturis pendet a Propositionibus novem primis ejusdem Libri: ideo Propositiones decem primæ hujus Libri pendet a Newtono innotuere anno 1676|, aut antea. \vel potius anno 1671./|
Ad eandem Quæstionem spectat quod Newtonus in Epistola sua prædicta ad Oldenburgium 24 Octob. 1676 data,[39] ubi Problematum genera quædam nominasset quæ per Methodum suam solveren tur, et methodum Tangentium Slusij inde fluere, id absque æquationum Reductione, dixisset; subjungit: Fundamentum harum operationum satis OBVIVM quidem, quoniam jam non possum ejus explicationem \ejus/ prosequi, sic potius celavi. 6accdæ &c. Celavit igitur ut obvium, ne subriperetur. Quam vero fuit obvium et quam facile subripi potuit, sic patebit. Gregorius scripsit ad Collinium 5 Sept. 1670,[40] se ex Barrovij Methodis Tangentes ducendi invenisse methodum generalem et Geometricam ducendi: Tangentes ad omnes curvas sine calculo. Slusius se ejusmodi methodum Tangentium habere mense Octobri 1672 scripsit ad Oldenburgum Et Newtonus 10 Decem 1672 scripsit ad Collinium in hæc verba.[41] Ex animo gaudeo D. Barroviu|j|m nostri Reverendi Lectiones Mathematicas exteris adeo placuisse, ne parum me juvat intelligere eos [Slusium et Gregorium] in Eandem mecum incidisse ducendi Tangentes methodum &c. Et subinde Newtonus in eadem Epistola methodum suam ducendi Tangentes descripsit, & addidit, hanc methodum esse partem vel Corollarium potius methodi suæ gene\ra/lis solvendi abstrusiora p|P|roblemata, et non hærere ad quantitates surdas. Epistolas totas Gregorij et Newtoni habes infra in Commercio Epistolico, et earum Exempl apographa Oldenburgius 26 Iunij 1676 misit ad Leibnitium[42] inter Excerpta ex Gregorij Epistolis, et Leibnitius incidit in Prælectiones Barrovij in Anglia mense Octobri anni 1676, ut ipse scripsit in Epistola ad Abbatem de Comitibus 9 Apr. 1716.
Sunto jam ut in Epistola Newtoni quantitates datæ a, b, c, Abscissa , Ordinata , et Linea Curva ACF; & proponatur Æquatio quævis quantitates illas duas fluentes x et y involvens, puta , ut in eadem Epistola; et ducenda sit recta CD quæ Curvam tangat in C, & Abscissam utrin productam secet in D. Multiplicetur omnis æquationis terminus per indicem dignitatis x, et productum divisum per x (videlicet ) vocetur R. Multiplicetur omnis æquationis terminus per indicem dignitatis y, et productum divisum per y (videlicet ) vocetur S. Et per Regulam in Epistola illa Newtoni traditam, erit subtangens , vel potius propterea quod AB et BD ducantur ad partes contrarias. Et hæc est Regula ducendi Tangentes quam Newtonus in Epistola illa posuit, ut partem aliquam vel specimen vel Corollarium Methodi suæ generalis. Methodus vero tota vel ex hac ejus parte, et Propositio generalis ex hoc ejus Corollario sic deducitur.
Agatur secundum methodum Tangentium Barrovij & Gregorij, Ordinata nova EF, priori BC proxima, et compleatur parallelogrammum BCGE, et pro differentijs vel momentis BE et GF, scribantur p et q: et erit FG ad GC ut est CB ad BD, id est, q ad p ut y ad BD, seu , et facta reductione, . Hæc æquatio, ubi duæ tantum sunt fluentes, involvit earum Differentias. Et ubi plures sunt fluentes, operatio similis ad omnes applicata dabit æquationem involventem omnium Differentias. Et Theorema hocce, quod sic ex Newtoni {illeg} Epistola facillime colligitur, illud omne comprehendit quod Leibnitius ad Newtonum Anno 1677 rescripsit, ut et illud omne quod in Actis Eruditorum Anno 1684 in lucem edidit. Nam solutionem comprehendit Propositionis primæ libri de Quadraturis.
Eodem denique spectat quod Leibnitius per Literas 12 Maij 1676 \datas,/[43] peteret {illeg}|ab| Oldenburgio ut is demonstrationem serierum duarum Newtoni, id est, methodum easdem inveniendi in Analysi per series descriptam, postularet a Collinio, et ab eo acceptam ad se mitteret: et quod sub finem mensis Octobris ejusdem anni Leibnitius videri|e|t in manibus Collinij \Epistolas plures Newtoni Gregorij et aliorum quæ præcipue de seriebus scriptæ erant et inter alias/ Epistolam Newtoni ad Oldenburgium 24 Octobris ejusdem datam,[44] ubi Newtonus Analysin illam se describit. Eo ipso tempore quo Mercatoris Logarithmotechnia prodijt, communicatum est per amicum D. Barrow (tunc Matheseos Professorem Cantab.) cum D. Collinio, compendium quoddam ha Methodi harum serierum; in quo significaveram Areas & Longitudines Curvarum omnium, & solidorum Superficies et Contenta ex datis Rectis; et vice versa ex his datis Rectas determinari posse: et Methodum ibi indicatam illustraveram diversis seriebus. Collinius uti eodem tempore ostendit Leibnitio Epistolas plures Newtoni Gregorij et aliorum, quæ præcipue de seriebus scriptæ erant. \per series Compendium methodi serierum vocat./ Et nondum probatum fuit quod Leibnitius eo tempore non viderit \hoc Compendium vel hanc Newtoni/ Analysin illam Newtoni per series; et postea non scripserit dx, et dy pro o, ov, oy, et pro \ubi symbola o, ov, oy, idem significant cum symbolis dz, dy,/ dx, dv, \et similibus/ quæ D. Leibnitius postea adhibuit.
Et his præmissis legatur jam Recensio Commercij Epistolici, et consulatur Commercium ipsum sicubi de factis dubitatur, & caveatur a Rumigerulis \virum novel{illeg}\{illeg}/ scriptoribus/ qui cum Leibnitio vivente Commercium cum Leibnitio habuerunt & rerum mathematicarum non sunt positi
Præfatio.[45]
Consessus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca Anno 1712 imprimi curavit, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum vero D. Leibnitius huic Libro minime responderet, sed \Quæstionem |Quæstionem de primo Inventore desereret & ad|/ Quæstiones Metaphysicas alias ad hanc rem nihil spectantes & sine fine tractandas|, id est ad rixas| proponeret, et editores \confugeret prixandi gratia, et/ ejus amici quidam adhuc rixentur: visum est hunc Librum una cum ejus Recensione quæ in Transactionibus Philosophicis ac Diario Literario Anno 1715 (anno et septem vel octo mensibus ante obitum D. Leibnitij) impressa fuit, in lucem iterum mittere, ut Historia vera ex antiquis monumentis deducta ad posteros abs rixis ac disputationibus ad rem nil spectantibus perveniat, et sic finis imponatur huic controversiæ. Nam depulso plagij crimine res non digna est de qua ulterius disputetur.
[Epistolas ad Oldenburgium Leibnitius scripsit {illeg}|3| Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij & 8 Iun. 1673; 15 Iul. & 26 Octob. 1674; 30 Mar. 20 Maij, 12 Iul. & 28 Decem. 1675; 12 Maij, 27 Aug. & 18 Novem 1676; 21 Iun. & 12 Iul. 1677. Et harum omnium Autographa adhuc asservantur si duas tantum {illeg} excipias 27 Aug & 18 Novem. 1676 datas et in tertio Operum Wallisij Volumine impressas: ubi etiam eæ 15 Iul. & 26 Octob. 1674; 12 Iul. & 28 Decem. 1675; 21 Iun. & 12 Iu. 1677 leguntur. Harum etiam septendecim Epistolarum Apographa (si tertiam et ultimas quin excipias) extant in libris antiquis Epistolicis Regiæ Societatis Numo. 6. pag. 35, 34, *, 101, 115, 137, & No 7, pag. 93, 110, 213, 235, 149, 189. Et hæ omnes Leibnitij Epistolæ una cum Epistolis mutuis Oldenburgij perpetuum inter eos constituunt per Epistolas commercium a die 3 Feb. 1673 ad us mortem Oldenburgij, præter Epistolam qua Leibnitius postulabat Excerpta ex epistolis Gregorij ad se mitti & epistolam qua Oldenburgius excerpta illa misit. Epistolæ Leibnitij versabantur circa numeros ad us 8 Iunij 1673: dein Leibnitio Geometriam addiscente, Commercium aliquamdiu intermissum est, et 15 Iulij 1674 renovatum est a Leibnitio sic scribente: Diu est quod nullas a me habuisit literas. Et ab hoc tempore Commercium quod Leibnitius cum Oldenburgio Collinio et Newtono habuit, circa series et altiorem Geometriam versabatur, et hic integrum ({illeg}|qu|oad hanc disputationem) imprimitur, præter dictas duas epistolas quæ interciderunt. Nam Collinius & Newtonus nullum cum Leibnitio Commercium habuerunt præterquam per Oldenburgium. De fide Epistolarum minime dubitatur, certe non apud Anglos.
Vbi primum Commercium epistolicum lucem vidit, D. Leibnitius librum non vidisse, sed ad judicium primarij Mathematici et a partium studio alieni provocasse, cum ipse per occupationes diversas rem tunc non satis discutere posset. Et sententiam \Iudicium/ mirabilem nomine hujus Mathematici 7 Iunij 1713 data|u|m in schedula contumelijs referta die 29 Iulij data describi, & utra|u|m per Europam spargi curavit, sine nomine vel Mathematici, vel Impressoris, vel Vrbis in qua impressa fuit; adjuvante ni fallor Menkenio. \Author schedulæ utitur voce illaudabili quæ Leibnitio fere propria fuit, et narrat quæ inter Hugenium & Leibnitium Parisijs ante annos 37 vel 38 privatim gesta fuerant; et quæ de serie Gregorij habet, de Commerio {sic} Epistolico desumpta sunt. Annon Leibnitius hæc scripserit, & Commercium videri|a|t? Sententiam in schedula descriptam voco, mirabilem./ Sententiam voco mirabilem quia Iudex methodum collocat in characteristica, in {illeg} methodo synthetica desiderat symbola analytica, contra Newtonum disputat ex usu literæ o, literas punctis notatas lucem primo vidisse ait in tertio volumine operum Wallisij \id est anno 1699/, et Newtonum Regulam falsam dedisse pro differentijs secundis, et rectam methodum differentiandi differentialia non cognovisse nisi longo tempore postquam alijs fuisset familiaris: cum tamen characteristica mutari possit non mutata methodo, in methodo synthetica nulla sit occasio utendi symbolis analyticis, Newtonus adhuc utatur litera o eodem sensu quo prius, & literæ punctis superimpositis notatæ methodus Newtoni differentiandi differentialia lucem viderint in secundo operum Wallisij volumine, pag. 392, \id est annis|o| tribus 1693; annis tribus antequam Marchio Hospitalius quæ a Bernollio didicerat in lucem edidit./ & methodus illa verissima sit, et lucem prius viderit in secundo Lemmate libri secundi Principiorum et optima. |et optima.|
Viennæ agens, ne libro responderet, causabatur per biennium seMathematicus ille Iudex in scripto prædicto latine edito Bernoullium citabat tanquam a se diversum: Leibnitius vero sub finem anni 1715, in ejusdem versione Gallica, citationem illam (nescio qua fide) delevit et Mathematicum esse Bernoullium ipsum scripsit, et literis ad Abbatem de Comitibus datis Problemata Bernoullij Analystis Anglis solvenda proposuit, & chartam illam volantem denuo dispersit, et ad sententiam Bernoullij appellans, amicos suos rerum mathematicarum inscios in Newtonum totis viribus per literas impellens|re| conatus est: cum tamen Bernoullius judex consistui jure nullo posset nisi ipse jure omni in methodum differentialem prius renunciasset; et Wallisius longe antea de hac re judicium contrarium tulisset, Leibitio et Menkenio per ea tempora non mussitantibus.
In charta illa volante Leibnitius Epistolam 15 Apr. 1675 scriptam (qua Oldenburgius series aliquot ad Leibnitium miserat, et inter alias seriem Gregorij quam Leibnitius postea ut suam edidit) suspectam reddere conatus est; Tale quiddam, inquiens, Gregorium habuisse ipsi Angli et Scoti, Wallisius, Hookius, et Newtonus & junior Gregorius ultra triginta sex annos ignoraverunt et Leibnitij esse inventum crediderunt. Verum hæc Epistola in Libro Epistolico Regiæ Societatis asservata, ut et Epistola \autographa/ Leibnitij se series missas accepisse agnoscentis, cum ijsdem epistolis in Commercio editis, coram Comite de Kilmansegg, Abbate de Comitibus, Ministris aliquot publicis exterorum Principum, & alijs exteris non paucis, Anno 1715, in domo Regiæ Societatis collatæ sunt, et impressionis fides probata. Sed et Leibnitius ipse anno proximo in Epistola sua ad Comitissam de Kilmanseg 18 Apr. data, idem agnovit dum narrat, ut cum ipse de serie quam pro circulo invenerat, ad Oldenburgium scriberet (vizt per epistolas 15 Iulij & 26 Octob. 1674;) Oldenburgius responderit (8 Decem. 1674) Newtonum quendam Cantabrigiensem jam antea similia dedisse, non solum pro circulo sed etiam pro omni figurarum aliarum genere, et ipsi miserit serierum ✝[46]specimina. His verbis Leibnitius agnoscit se epistolam Oldenburgij 15 Apr. 1675 datam accepisse. Nam specimina illa erant in hac epistola. Et in eadem erat series Gregorij, ut in Commercio epistolico videre licet. Sed pergit Leibnitius: Hoc non obstante, ait, series mea satis laudata fuit per Newtonum ipsum. Postea, inventum est Gregorium quendam eandem etiam seriem invenisse: sed hoc didici tarde. Hæc Leibnitius. Literas uti multa fruge Algebraica refertas acceperat, sed tunc præter ordinarias curas Mechanicis imprimis negotijs distractus non potuit examinare series quas Oldenburgius miserat ac cum suis comparare (ut ipse tunc rescripsit) neque unquam comparavit, sed priusquam Epistolam 12 Maij 1676 datam ad Oldenburgium scripsit, oblitus est se series anno superiore missas accepsse, et seriem quam anno 1682 pro sua edidit, Gregorium quendam tarde invenisse didicit tarde. Newtonus autem et Wallisius et junior Gregorius hanc seriem a Gregorio seniore ad Collinium et ab Oldenburgio ad Leibnitium fuisse missam, per ea tempora multo magis ignorarunt. Leibnitius ita epistolam Oldenburgij seriebus refertam accepit, sed series illas, si fas est credere, nunquam contulit cum suis.
Contra fidem epistolarum in Commercio editarum scripsit insuper Leibnitius, Arbitrorum Consessum a Regia Societate constitutum omnia edidisse quæ contra ipsum facerent, omnia omisisse quæ contra Newtonum. Et præterea per epistolam 25 Aug. 1714 ad D. Chamberlain datam postulavit ille ut Societas Regia epistolas nondum editas ad ipsum mitterent. Nam cum Hanoveram, inquit, rediero, possum etiam in lucem mittere Commercium aliud Epistolicum, quod historiæ Literariæ inservire possit; et literas quæ contra me allegari possunt non minus publici juris faciam quàm quæ pro me faciunt. Hæc Leibnitius. Sed omnes inter ipsum et Oldenburgium epistolæ, quatenus ad hanc rem faciunt spectant continua serie jam antea in Commercio edito impressæ sunt præter duas quæ non extant (uti jam dictum est), et nullius esse momenti videntur.
Attamen ut accusationem suam confirmaret, scripsit Leibnitius sub finem anni 1715, in Epistola sua prima ad Abbatem de Comitibus per Galliam missa, quod in secundo ejus in Angliam itinere Collinius ostenderit ipsi partem Commercij sui in qua Newtonus agnoscebat ignorantiam suam in pluribus, dicebat (inter alia) quod nihil invenisset circa dimensiones Curvilinearum quæ celebrantur, præter dimensionem Cissoidis; sed Consessus hoc totum suppressit. Et Newtonus in epistola sua ad dictum Abbatem 26 Feb. 171, respondit, hoc non fuisse omissum sed extare in epistola sua ad Oldenburgium 24 Octob. missa, & impressum fuisse in Commercio Epistolico pag. 74. lin. 10, 11. Et subinde Leibnitius in Epistola sua proxima ad Abbatem de Comitibus Apr. 9. 1716 agnovit se errasse. Sed, inquit, exemplum dabo aliud. Newtonus in una Epistolarum ejus ad Collinium agnovit se non posse invenire magnitudinem sectionum secundarum (vel segmentorum secundorum) sphæroidum & corporum similium sed Consessus hunc locum vel hanc Epistolam minime edidit. Newtonus autem in Observationibus quas in hanc Leibnitij Epistolam scripsit, respondit: Si Consessus hoc omisisset, recte omnino omissum fuisse, cum hujusmodi cavillationes ad Quæstionem de qua agitur nil spectent; sed Consessum hoc minime omisisse. Collinius in epistola ad D. Gregorium 24 Decem. 1670, et in altera ad D. Bertet 21 Feb. 1671 (utris impressis in Commercio p. 24, 26) scripsit quod methodus Newtoni se extenderet ad secunda solidorum segmenta quæ per rotationem generantur. Et Oldenburgius idem scripsit ad Leibnitium ipsum 8 Decem. 1674, ut videre est in Commercio, pag. 19. Leibnitius igitur accusationem finxit.
Cæterum Leibnitius in prima sua ad Abbatem de Comitibus epistola scripsit \dixit/, eos qui contra ipsum scripsissent (id est Consessum a Regia Societate constitutum) candorem ejus aggressos esse per interpretationes duras et male fundatas, & voluptatem non habituros esse videndi Responsa ejus ad pusillas rationes eorum qui ijs tam male utuntur. Interpretationes illæ nullius quidem sunt autoritatis nisi quam ab Epistolis derivant; at male fundatas esse Leibnitius nunquam ostendit.
Subinde vero Newtonus in prima sua ad Abbatem Epistola 26 Feb. 171 ita rescripsit. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse res factas refutare Silentium suum hac in re excusat, prætexens se librum nondum vidisse, & otium illi non esse ad examinandum, sed se orasse Mathematicum celebrem ut hoc negotium in se susciperet. — Vtitur et novo prætextu ne respondeat, dicens quod Angli voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes; & proponens disputationes novas philosophicas ineundas, & Problemata solvenda: quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 data, et per Galliam in Angliam missa, pergebat se excusare ne respondeat. Vt operi, inquit, contra me edito sigillatim respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præteritorum quorum perparvum reminiscor; examinandæ erunt veteres epistolæ quarum plurimæ sunt perditæ, præterquam quod maxima ex parte non conservavi minuta mearum, et reliquæ sepultæ sunt in maximo chartarum acervo quem non possum sine tempore et patientia discutere. Sed otium minime mihi suppetit, alijs negotijs alterius prorsus generis occupato. Hæc Leibnitius.
<213r>Attamen post ejus mortem (quæ contigit proximo mense Septembri,) in Elogio ejus quod in Actis Eruditorum pro mense Iulio anni 1717 impressum fuit, amici ejus scripserunt eum Commercio epistolico Anglorum aliud quoddam suum idem amplius opponere decrevisse; et paucis ante obitum diebus Cl. Wolfio significasse se Anglos famam ipsio|u|s lacessentes reipsa rfutaturum: quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus inexpectatum, et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum nihil quicquam affine habens. Hæc illi. Verum ex jam dictis patet illum aliud nullum cum Oldenburgio Commercium habuisse epistolicum habuisse. Et inventum novum his nihil affine habens, ad rem nihil spectat. Missis ægrorum somnijs Quæstio tota ad Epistolas antiquas referri debet. Et hæc Quæstio est (secundum Compilatores Actorum Leipsiensium) Vtrum Leibnitius sit inventor methodi de qua disputatur, et pro Differentijs igitur Leibnitianis Newtonus adhibet semper [ex quo usus est hac methodo] adhibuit Fluxiones, quemadmodum Honoratus Fabrius motuum progressus Cavallerianæ methodo substituit. Quæritur, non quis methodum totam invenit (nam tota nondum inventa est) sed quis Methodum invenit quatenus in scriptis a Newtono editis habetur|.|, & quid alij {add}{illeg}de{rint} |Quæstionem aliæ omnes dimittendæ sunt & hæc sola discutienda.|
Ad hanc Quæstionem spectat quod Leibnitius differentias & methodum differentialem vocat quas Newtonus momenta & methodum momentorum, et quod methodus momentorum et methodus fluxionum una et eadem sit methodus. Momenta sunt partes quas Leibnitius differentias vocat, fluxiones sunt velocitates quibus partes generantur. In methodo Leibnitij considerantur partes, in ea Newtoni considerantur etiam velocitates. Newtoni methodus est amplior & Newto Leibnitij methodum c{a}|o|mplectitur. Sed Newtonus methodum inversam imperfectam reliquit imperfectam, et quæritur quida alij addiderint.
Eodem spectat quod D. Wallisius Propositionem primam Libri de Quadraturis, exemplis inveniendi fluxiones primas et secundas illustratam ediderit anno 1693 in Volumine secundo operum suorum, pag. 392, ut supradictum est. Et ejusdem Propositionis solutionem Newtonus demonstravit synthetice in Lem. 2 Lib. 2 Principiorum anno 1686. Sunto quantitates datæ a, b, c, fluentes x, y, z, fluxiones p, q, r, & momenta op, oq, or. Et proponatur æquatio quævis fluentes involvens, puta . Et per Lemma prædictum, si sola fluat x, momentum totius erit ; si sola fluat y, momentum totius erit ; si sola fluat z, momentum totius erit ; si fluant omnes, momentum totius erit . Et quoniam totum semper est æquale nihilo, momentum totius erit æquale nihilo. Hæc est æquatio involvens fluentium momenta. Si eadem dividatur per o, habebitur æquatio involvens fluxiones. Per hoc Lemma igitur solvitur Propositio: Data æquatione fluentes quotcun quantitates involvente, fluxiones invenire. Et in hujus Solutione fundatur methodus fluxionum uti dictum est in Scholio quod eidem Pro positioni subjungitur. Eadem Propositio extat in Epistola Newtoni ad Oldenburgium 24 Octob. 1676, et ibi dicitur esse fundamentum methodi generalis de qua Newtonus Tractatum scripserat tum ante annos quin, id est, anno 1671. Hujus autem Solutio exhibet Algorithmum seu calculum Arithmeticum Methodi ejusdem, ideo Algorithmus ille Newtono innotuit anno 1671.
Eodem spectat quod Propositio secunda Libri de Quadraturis extet soluta in Analysi per series quam Barrovius anno 1699 ad Collinium misit, pag. 19, ubi docetur Inventio Curvarum quæ quadrari possunt. Nam hæc Propositio \secunda/ pendet a Propositione prima Libri ejusdem; ideo Propositiones duæ primæ Libri de Quadraturis Newtono innotuere anno 1669. Propositio autem tertia et quarta sunt exempla tantum Propositionis secundæ, ut ibi dicitur. Et propterea Methodus fluxionum quatenus in Propositionibus quatuor primis Libri de Quadraturis habetur, Newtono innotuit Anno 1669.
Eodem spectat quod Propositionem quintam Libri de Quadraturis Wallisius edider|it|it anno 1693 in secundo operum suorum volumine pag. 391. Hac Propositione quadrantur figuræ accuratè et Geometricè si fieri potest. Et hoc arti{illeg}|f|icium Newtono innotuit anno 1676, uti patet per Epistolam ejus 24 Octob. ejusdem anni ad Oldenburgium missam pag Vt et anno 1669 uti affirmatur in Analysi per series quam Barrovius eo anno ad Collinium misit, pag I{illeg}|m|ò et annis aliquot antequam Mercatoris Logarithmotechnia prodijt, testibus Barrovio & Collinio in Epistola Collinij ad D. Strode \p 119/. Atqui Propositio illa quinta pendet a Propositionibus quatuor pr{illeg}|i|oribus. Ideo methodus fluxionum quatenus continetur in Propositionibus quin primis Libri de Quadraturis Newtono innotuit annis aliquot antequam prodiret Mercatoris Logarithmotechnia, id est anno 1666 aut antea, testibus Barrovio et Collinio. Id quod testatus est etiam Wallisius in Præfatione ad Operum suorum Volumen primum.
Ad eandem Quæstionem spectat quod in Libro de Analysi per Series Fluxiones ac Differentias, anno 1711 a Ionesio edito, pag. 38, extet Fragmentum epistolæ Newtoni ad Collinium Nov. 8 datæ, his verbis: Nulla extat Curva cujus Æquatio ex tribus constat terminis, in qua, licet quantitates incognitæ se mutuo afficiant, & indices dignitatum sint surdæ quantitates (v.g. : ubi x designat basin; y ordinatam; λ, μ, σ, τ indices dignitatum ipsarum x & y; & a, b, c quantitates cognitas una cum signis suis + & −) nulla, inquam, hujusmodi est Curva de qua an quadrari possit necne, vel quænam sint figuræ simplicissimæ quibuscum comparari possit, sive sint Conicæ Sectiones, sive aliæ magis complicatæ, intra horæ Octantem respondere non possim. Deinde methodo directa et brevi, imo methodorum omnium generalium brevissima, eas comparare queo. Quinetiam si duæ quævis figuræ per hujusmodi æquationes expressæ proponantur, per eandem Regulam eas modo comparari possint, comparo. — Eadem methodus æquationes quatuor terminorum alias complectitur, haud tamen adeo generaliter. Hactenus Newtonus. Hæc autem abs meth{illeg}|o||do| fluxionum fieri non possunt; indicant vero Methodum quadrandi Curvilineas in Libro de Quadraturis expositam, et methodum fluxionum in qua methodus altera fundatur, eous promotas fuisse ante 8 Novem. 1676.
Eodem spectat etiam quod in Epistola Newtoni ad Oldenbur gium 24 Octob. 1676 data, descriptæ habentur Ordinatæ Curvilinearum, quarum collationes cum Conicis sectionibus Newtonus in Catalogum tunc olim retulerat, id est anno 1671 aut antea. Nam anno 1676 Newtonus annos quin ab hac methodo promovenda abstinuerat, ut ipse ibidem refert. Earundem Curvilinearum et eodem ordine et modo ijsdem literis descriptarum collationes cum Conicis sectionibus ponuntur in Tabula posteriore duarum quæ in Scholio ad Propositionem decimam Libri de Quadraturis habentur, ideo Tabula illa composita fuit et methodus quadrandi Curvilineas eous producta f{it}|{u}|{i}t annis minimum quin ante annum 1676. Id quod abs methodo Fluxionum fieri non potuit. Iam vero Propositio decima Libri de Quadraturis pendet a Propositionibus novem primis ejusdem Libri: ideo Propositiones decem primæ hujus Libri Newtono innotuere anno 1676, vel potius anno 1671.
Ad eandem Quæstionem spectat quod Newtonus in Epistola sua prædicta ad Oldenburgium 24 Octob. {illeg} 1676 data, ubi Problematum genera quædam nominasset quæ per Methodum suam solverentur, et methodum Tangentium Slusij inde fluere, id abs æquationum Reductione dixisset; subjungit: Fundamentum harum operationum satis OBVIVM quidem, quoniam jam non possum explicationem ejus prosequi, sic potius celavi. 6accdæ &c. Celavit igitur ut obvium, ne subriperetur. Quam vero fuit obvium et quam facile subripi potuit, sic patebit.
Gregorius scripsit ad Collinium 5 Sept. 1670 se ex Barrovij Methodis Tangentes ducendi invenisse methodum generalem et Geometricam ducendi: Tangentes ad omnes Curvas sine Calculo. Slusius se ejusmodi methodum Tangentium habere, \scripsit ad Oldenburgium/ mense Octobri vel Novembri 1672. Et Newtonus 10 Decem 1672 scripsit ad Collinium in hæc verba. Ex animo gaudeo D. Barrovij amici nostri Reverendi Lectiones Mathematicas exteris adeo placuisse, neque parum me juvat intelligere eos [Slusium et Gregorium] in eandem mecum incidisse ducendi Tangentes methodum &c. Et subinde Newtonus in eadem Epistola methodum suam ducendi Tangentes descripsit, et addidit hanc methodum esse partem vel Corollarium potius methodi suæ generalis solvendi abstrusiora Problemata, et non hærere ad quantitates surdas. Epistolas totas Gregorij et Newtoni habes infra in Commercio Epistolico, et earum Apographa Oldenburgius 26 Iunij 1676 misit ad Leibnitium inter excerpta ex Gregorij Epistolis, et Leibnitius incidit in Prælectiones Barrovij in Anglia mense Octobri anni 1676, ut ipse scripsit in Epistola ad Abbatem de Comitibus 9 Apr. 1716. Sunto jam, ut in epistola Newtoni quantitates datæ a, b, c, Abscissa , Ordinata , & Linea curva ACF; et proponatur Æquatio quævis quantitates illas duas fluentes x et y involvens, puta , ut in eadem Epistola: et ducenda sit recta CD quæ Curvam tangat in C et Abscissam utrin productam secet in D. Multiplicetur omnis Æquationis terminus per indicem dignitatis x et productum divisum per x (videlicet ) vocetur R. Multiplicetur omnis æquationis terminus per indicem dignitatis y, et productum divisum per y (videlicet ) vocetur S. Et per Regulam in Epistola illa Newtoni traditam, erit subtangens , vel potius propterea quod AB et BD ducantur ad partes contrarias. Et hæc est Regula ducendi Tangentes quam Newtonus in Epistola illa posuit ut partem aliquam vel specimen vel Corollarium Methodi suæ generalis. Methodus vero tota ex hac ejus parte, et Propositio generalis ex hoc ejus Corollario sic deducitur.
Agatur secundum methodum Tangentium Barrovij & Gregorij, Ordinata nova EF, priori BC proxima, et compleatur parallelogrammum BCGE, et pro differentijs vel momentis BE et GF, scribantur p et q: et erit FG ad GC ut est CB ad BD, id est, q ad p ut y ad BD, seu , et facta reductione, . Hæc Æquatio ubi duæ tantum sunt fluentes involvit earum differentias. Et ubi plures sunt fluentes, operatio similis ad omnes applicata dabit æquationem involventes|m|{illeg} omnium Differentias. Et Therema {sic} hocce quod sic ex Newtoni Epistola facillo\ime/ colligitur, illud omne comprehendit quod Leibnitius ad Newtonum Anno 1677 rescripsit, ut et illud omne quod in Actis Eruditorum Anno 1684 in lucem edidit. Nam solutionem comprehendit Propositionis primæ Libri de Quadraturis.
Eodem denique spectat quod Leibnitius per Literas 12 Maij 1676 datas, peteret ab Oldenburgio is|u|t is demonstrationem serierum duarum Newtoni, id est, methodum easdem inveniendi in Analysi per series descriptam, postularet a Collinio et ad se mitteret; et quod sub finem mensis Octobris ejusdem anni Leibnitius videret in manibus Collinij epistolas plures Newtoni Gregorij et aliorum quæ præcipue de seriebus scriptæ erant, et inter alias Epistolam Newtoni ad Oldenburgium 24 Octobris ejusdem datam, ubi Newtonus Analysin illam per series Compendium methodi serierum vocat. Et nondum probatum fuit quod Leibnitius eo tempore non viderit hoc Compendium vel hanc Analysin per series; ubi Methodus fluxionum describitur, & symbola o, ov, oy, , idem significant cum symbolis dz, dy, dx, , & similibus, quæ D. Leibnitius postea adhibuit.[47]
Appendix |to 2d Edit. of Com. Epist|
Vbi Commercium Epistolicum prodijt; cum Leibnitius Viennæ agens, per occupationes diversas, per occupationes diversas (ut ipse scripsit) rem tunc discutere non satis posset, ad judicium primarij Mathematici, et harum rerum peritissime|i|, & a partium studio alieni recurrendum sibi putavit. Is vero omnibus ex ita pronunciavit literis 7 Iunij 1713 datis:
Videtur aNewton\ . . . . /us occasionem nactus, serierum opus multum promovisse per Extractiones Radicum quas primus in usum adhibuit, et quidem in ijs excolendis ut verisimile est, ab initio omnes suuam sit|tu|dium posuit, nec credo tunc temporis vel somniavit adhuc de bcalculo suo fluxionum & fluentium ad instar bAlgorithmi vel Regularum Arithmeticarum aut Algebraicarum. Ejus meæ conjecturæ [primum] validissimum indicium est quod de lit{e}ris x & y literis x vel y punctis, uno, duobus tribus &c punctis superpositis, quas pro , , ; , , d3|&|c nunc adhibet; cin omnibus istis Epistolis [Commercij Collinsiani, unde argumenta ducere volunt] nec colam nec vestigium invenias. Imo ne quidem in Principijs Naturæ Mathematicis N . . . . i \ubi calculo suo fluxionum utandi tam dfrequentem habuisset occasionem, ejus/ vel verbulo fit mentio, aut notam hujusmodi unicam cernere licet, sed omnia fere per lineas figurarum sine certa Analysi ibi peraguntur more non ipsi tantum, sed et Hugenio, imò jam antea [in nonnullis] dudum Torricellio Robervallio, Cavallerio, alijs, usitato. Prima vice hæ literæ punctatæ comparuerunt in etertio Volumine operum Wallisij, multis annis postquam Calculus differentialis jam ubi locorum invaluisset. Alterum quo|ind|icium quo conjicer licet Calculum fluxionum non fuisse natum ante Calculum differentialem, hoc est, differend|t|iandi differentialia, N . . . . us nondum cognitam habuerit, quod patet ex ipsis Principijs Phil. Math. fubi non tantum incrementum constans ipsius x quod nunc notaret per x punctatum uno puncto, designat per o [more vulgari qui calculi differentialis commoda destruit,] sed etiam Regulam circa gradus ulteriores f{g}|f|alsam |dedit| [quemadmodum ab eminte {sic} quodam Mathematico dudum notatum est.] . . . . . . . . . . . . Saltem apparet N . . . . o {illeg} h rectam methodum differ\enti/andi diffe\re/ntialia non innotuisse longo tempore postquam alijs fuisset familiaris. &c. Hæc ille.
Annotationes in præcedentem Epistolam sententiam.
a Hæc Epistola, cum celetur et Iudicis et Iudicat nomen, Libellum defamatorium magis sapit, quam probi Iudicis sententiam.
b Algorithmus habetur in Vol. 2 Operum Wallisij, pag. 392, ut antea in Analysi per series pag. 19, ubi Ordinatim Applica\ta/ Curvæ ({ccu} momentum areæ fluentis) ex æquatione Abscissam et Aream involvente deducitur.
et in Lem. 2 Lib. 2 Princip. et in Epist ad Collins 10 Decem. 1672 &c In Analysi per series Newtonus utitur symbolis ov, oy, . In Lem 2. Lib. 2 Princip. utitur symbolis A, B, C; a, b, c. In Introductione ad librum de Quadraturis methodum docet et symbolis \exempli{illeg}/ illustrat abs symbolis. In ipso libro puncta superponit literis.
d Nullam habuit occasionem. Propositiones non invenit per Synthesit|{n}|, sed \quidem/ per Analysin \sed/ inventas demonstravit \& edidit/ synthetice {illeg} in Gemetriam admitterentur |more veterum qui nihil admittebant in Geometriam prius admittebant quam demonstratum esset synthetice.|
e Volumen tertium prodijt anno 1699, literæ punctæ|a|tæ comparuerunt in secundo Volumine anno 1693, annis duobus antequam Wallisius audivit calculo|u|m differentialem apud exteros celebrari, ideo antequam calculus differentialis invaluit.
f Eodem sensu Newtonus utitur litera o in Libr{illeg} \Introductione ad Librum/ de Quadraturis ubi methodum fluxionum expresse docet.
g In Libro Principiorum \Principijs Phil. Math./ Newtonus nullam dedit Regulam differentiandi fluentes præterquam in Lem. 2 Lib. 2. Et Regula illa verissima est, et ad gradus omnes \ulteriores/ facile applicatur.
h Recta methodus differentiandi differentialia habetur in Propositione prima Libri de Quadraturis. Hanc Propositionem exemplis in differentijs primis et secundis illustratam Wallisius anno 1693 in secundo operum suorum Volumine pag. 392 edidit. [Et hæc fuit Regula omnium prima \3/quæ \4/lucem \5/vidit \1/diffe\re/ntiandi \2/differentialia] Post tres annos Marchio Hospitalius Regulam similem edidit, et tum demum Methodus differentiandi differentialia cœpit alijs esse familiaris.
Quando \Quo tempore/ Commercium epistolicum prodijt, \Prodijt hic Liber sub finem Anni 167{0} 1712 Ex tempore/ D. Leibnitius Viennæ ageba|ns|{illeg} prætendebat se per occupationes diversas rem tunc discutere non satis posse, sed Mathematicum primarium [& harum rerum peritissimum & {illeg}] orasse ut is librum examinaret; {illeg} \&/ s|S|ententiam \vero/ hujus Mathematici 7 Iun 1713 \datam/ chartæ volanti inclusu|it|m \&/ perorbem dispersit; & nunquam postea adduci potuit ut huic libro responderet ulterius responderet. [Quo de causa visum est sententiam hujus mathematici hc subjungere \Hanc sententiam igitur subjungimus ut/ ut Responsi{illeg}|on||em| final{e} Leibnitij finalem quam D. Leibnitius finalem esse voluit] sententia Iudicis h{æc} quam Leibnitius finalem esse voluit, hæc erat.
c In Scholio ad Prop. XXXIV Lib. II Princip. probavit \omnium/ abs \symbolis aut/ calculo se methodum partem nobilem methodi inversæ tunc habuisse, fatente Leibnitio. Vide Acta Erudit. pro 1700 pag.
{i} Algorithmus habetur in \solutione/ Prop. 1 Libre|i| {illeg} de Quadraturis, quam Wallisius edidit anno 1693 in Vol. 2 Operum suorum pag. 392, Newtonus Demonstravit \anno 1686/ in Lem 2 lib 2 Princip. & adumbravit in Epist{illeg}. ad Collins 10 Decem 1672, {illeg} & fundamentum consistuit lib {illeg} hujus methodi in libro quem scripsit anno 1671, & exposuit anno 1669 in Analysi sua per series pag 19 ubi Ordinatim a|A|pplicata Curvæ (ceu momentum areæ fluentis) ex æquatione Abscissam et Aream involvente deducitur.
c In Analysi per series Newtonus utitur symbolis ov, oy, eodem sensu quo Leibnitius symbolis dz, dx, . In Lem. 2. lib. 2 Princip. utitur symbolis A, B, C; a, b, c. In Introductione – – – superponit literis. In scholio ad Prop. XXXIV Lib. II Princip. per ea quæ ibi dixit de solido minimæ resistentiæ abs calculo, probavit, fatente D. Leibnitio, quod habuit partem quandam nobilem methodi differentialis.
Præfatio.
Analysin per series et momenta a me scriptam Barrovius noster anno 1669 ad Collinium misit. Methodos ibi expositas in alio tractatu plenius explicui anno 1671, & inde tractatum \subsequentem/ de Quadratura curvilinearum anno 1676 extraxi. In epistola quadam \subsequente/ 10 Decem 1672 ad Collinium data methodum momentorum exemplo tangentium more Slusiano ducendarum illustravi, dixi eandem et{illeg}|i|am ad questiones \abstrusiora problematum genera/ \di{illeg}/ de Curvitatibus & longitudinibus Curvarum, de areis & centris gravitat{illeg}|is| &c sese extendere, et esse generalem et ad quantitates surdas non hærere, & methodo serierum in scriptis meis intertextam esse: et Coll\in/ius exemplar hujus epistolæ mense Iunio {un}a cum extractis ex epistolis D. Iacobi Gregorij \mense h{illeg} 1676/ ad Collinium \mense Iuniori anni 1676 ad/ D. Leibnitium tunc in Gallia agentem misit. \mese Iunio anni 1676/ {Et} [Eorundem tractatuum memini etiam in Epistola \24 Oct. 1676/ ad D. Leibnitium \data/ 24 Octob. 1676] Tandem in componendo libro de P præcedente de Principijs {na} Philosophi{illeg}|æ| naturalis principijs mathematicis, tra\c/tatu de quadratura curvilinearum plurimum usus sum, ideo hunc Tractatum subjungere visum est et eundem propterea subjungere visum est. ut et Tractatum de methodo differentiali cujus specimen in Lemmate V Lib. III. Princip habetur.
Epistola 10 Decem 1672 ad Collinium data {et} cujus exemp
Tractatus de quadratura Curvlinearum.
Methodus differentialis
Præfatio.
Analysin per series & momenta a me scriptam Barrovius noster anno 1669 ad Collinium misit. Methodos ibi expositas in alio tractatu plenius explicui anno 1671. In Epistola 10 Decem 168 1672 ad Collinium data methodum momentorum exemplo tangentium more Slusiano ducendarum illustravi, dixi eandem etiam ad abstrusiora Problematum genera {illeg} de curvitatibus & longitudinibus Curvarum de areis & centris gravitatis & sese extendere et esse generalem & ad quantitates surdas non hærere: Ed et Collinius exemplar hujus Epistolæ{illeg} ad D. Leibnitium misit tunc in Gallia agentem misit \id/ mense Iunio anni 1676. Et hoc anno sub autumno ex tractatu prædicto quem scripseram anno 1671, tractatum de quadratura curvilinearum extraxi, eodem \eodem et hoc tractatu/ plurimum usus sum in componendo libro præcedente de Philosophiæ naturalis principijs mathematicis. Et eundem propterea subjungere{illeg}sum est visum est in lib III de Principijs Philosophiæ Lem. V, specimen dedi methodi cujusdem differentialis. Quapropter tractatus|m| duos prædictum de quadratura figurarum subjunge visum est, ut et tractatum de methodo \illa/ differentiali.
Corrigenda in Philosop. Transact. pro Ian. et Feb. 171.
Pag. 174. lin 21. for ten write fifteen
Pag 176 lin 21. for being write from a copy
Pag 176 lin 24 after of Mr Newton add. The impression was finished in Decem 1710.
Pag 184 lin 3 blot out & Mr Collins.
Pag 191 lin 22 after year 1670 add. From this method & his own Mr Gregory dedu\c/ed a method of Tangents without computation, & notified it in a Letter to Mr Collins in a Letter dated 5 Novem. 1670.
Ib. between lin. 23 & 24 insert, conjecturing that it was the same with that of Gregory \{illeg}/ & Slusius.
Pag. 192
Pag. 194 lin. 6 for [came to the hands of Mr Leibnitz in the end of Winter {illeg} or] write was seen by Mr Leibnitz in London in November, & a copy thereof came to his hands at Hanover in the beginning of Spring following
Pag 195 lin 23 after 1696 add none of them being printed before the year 1699
Pag 198 lin. penult. for at that time write four years after
Pag 199 lin. 14 after he gave the add following, & put an asterisk after the word letter.
Pag 201 lin. 6 for his write the.
Ib. lin. 28 after he added, insert concerning a branch of this method by wch Mr Newton A.C. 1686 found the solidum minimæ resistentiæ
Pag 203 lin 4 after Acta Leipsica insert had not in the least detracted from any body but
Pag 203 lin 9 for novice write new man
Pag 205 lin 16 after rectangle write add for there he uses the symbol in the same sense in wch Mr Leibnitz uses the symbol
Pag. {illeg} 207 lin 33 after add et 396 add. This was the first Rule made publick for finding second third & fourth differences &c, & is the best:
Pag. 209 lin 21 after compared insert & with Gregories Letter of 5 Novem. 1670 &c
Pag. 212 lin 19 for many years after write in the Acta Eruditorum for Aug. 1693.
Ib. lin. 21 after thereof add & calling it Methodus infinitesimalis universalissima pro fluxionibus seriebus.
Pag. {illeg}|2|24. lin. 34. after Arguments for in {t}|s|ert{illeg} the being of –
Pag. 206 lin 32 after Book add published by Dr Wallis in the year 1693 (Vol. 2 pag \392)/
Historia Methodi infinitesimalis ex Epistolis antiquis eruta.
Consessus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca anno 1712 imprimi curarunt, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum vero D. Leibnitius huic Libro minime responderet, sed rixas \Quæstiones/ Metaphysicas alias ad hanc rem nihil spectantes confugerent, et ejus amici adhuc rixentur: visum est hunc librum una cum ejus Compendio \Recensione/ quod|æ| in Transactionibus Philosophicis pro mense Ianuario anni 171 \ante annos/ impressam fuit, et cui nullum adhuc responsum datum est, in lucem iterum emittere, ut historia vera ex antiquis monumentis deducta sepositis cavillationibus \rixis/ ad posteros perveniat.
Epistolæ D. Leibnitij ad Oldenburgium scriptæ quæ hic imprimuntur, datæ sunt 3 Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij & 8 Iunij 1673; 15 Iulij & 26 Octob. 1674; 30 Mar. 20 Maij, 12 Iulij & 28 Decem. 1675; 12 Maij, 27 Aug. & 18 Novem. 1676; 21 Iunij, & 12 Iulij 1677. Et hæ omnes Epistolæ, si tertium et ultimas quin excipias, descriptæ extant in Libris antiquis epistolicis Regiæ Societatis Numero 6, pag. 35, 34, *, 101, 115, 137; & No 7, pag. 93, 110, 213, 235, 149, 189. Et omnium etiam autographa etiam asservantur si duas tantum excipias 27 Aug et 18 Novem 1676 datas & in tertio operum Wallisij volumine impressas. Epistolæ 15 Iulij & 26 Octob. 1674 12 Iulij et 28 Decem. 1675 & 21 Iunij & 12 Iulij 1677 in tertio etiam Operum volumine impressæ sunt. Et hæ omnes Leibnitij Epistolæ una cum Epistolis mutuis Oldenburgij ad Leibnitium, quarum Exemplaria adhuc asservantur, perpetuum constituunt inter eos per Epistolas commercium a die 3 Feb. 1673 ad us mortem Oldenburgij, si modo epistolæ duæ excipiantur quarum alterâ postulavit Leibnitius Excerpta Epistolarum Gregorij ad se mitti, alteram Oldenburgius cum Excerptis misit. Epistolæ Leibnitij versabantur circa numeros ad us 8 Iunij 1673. Dein Leibnitio Geometriam altiorem addiscente, Commercium aliquamdiu quievit, et 15 Iulij 1674 renovatum est a Leibnitio sic {illeg}|scr|i{illeg}|b|ente. Diu est quod nullas a me habuisti Literas. Commercium igitur quod Leibnitius cum Oldenburgio, Collinio et Newtono habuit hic integrum imprimitur præter dictas duas Epistolas. Nam Collinius & Newtonus nullum cum Leibnitio commercium præterquam per Oldenburgium habuerunt. De fide epistolarum impressarum minime dubitatur apud Anglos. Contra fidem earum scripsit Leibnitius quod Arbitrorum Consessus a R. Societate constitutus omnia edidissent quæ contra ipsum facerent, omnia omisissent quæ contra Newtonum. \♂/ ♂ Et per epistolam 25 Aug. 1714 ad D. Chamberlayn datam postulavit ut Societas Regia epistolas nondum editas ad ipsum mitterent. Nam cum Hanoveram, qinuit, rediero, possum etiam in lucem iterum immittere Commercium aliud Epistolicum quod Historiæ Litterariæ inservire possit; & Litteras quæ contra me f{illeg} allegari possunt, non minus publici juris faciam quam quæ pro me faciunt. Hæc Leibnitius. Sed omnes inter ipsum et Oldenburgium Epistolæ, quatenus ad hanc rem spectant \continua serie/ jam ante impressæ fuerunt præter duas quæ non extant et nullius esse momenti videntur.
Attamen ut accusationem suam probaret, scripsit Leibnitius sub finem anni 1715 in Epistola sua prima ad Et ut hoc probaret, dixit sub finem anni 1715 in Epistola sua prima ad Abbatem de Comitibus, quod in secundo ejus in Angliam itinere, Collinius ostendit ill|ps|i partem Commercij sui in qua Newtonus agnoscebat ignorantiam suam in pluribus, dicebat (inter alia) quod nihil invenisset circa dimensiones Curvilinearum quæ celebrantur præter dimensionem Cissoidis; sed Consessus hoc totum suppressit. Et Newtonus in Epistola sua ad Abbatem 26 Feb. 171 respondit hoc non fuisse omissum, sed extare in epistola sua ad Oldenburgium 24 Octob. 1676 missa, & impressum i|f|uisse in Commercio Epistolico pag. 74. lin. 10, 11. Et subinde Leibnitius in Epistola sua ad Abbatem de Comitibus Apr. 9, 1676 agnovit se deceptum fuisse; sed, inquit, exemplum dabo aliud. Newtonus in una Epistolarum ejus ad Collinium agnovit se non posse invenire magnitudinem Sectionum secundarum (vel segmentorum secundorum) sphæroidum & corporum similium; sed Consessus hunc locum vel hanc Epistolam in Comercio epistolico minime edidit. Newtonus autem in Observationibus quas in hanc Leibnitij Epistolam scripsit, respondit quod si Consessus hoc omise|i|sset, recte omnino fecisset, cum hujusmodi cavillationes ad Quæstionem de qua agitur nil spectent; sed quod Consessum hoc omisit. Collinius in Epistola ad D. Gregorium {illeg}|24| |Decem 1670, &| in altera ad D. Bertet 21 Feb. 1671 (utris impressis in Commercio pag. 24, 26,) scripsit quod Methodus Newtoni se extenderet ad secunda solidorum segmenta quæ per rotationem generantur. Et Oldenburgius idem scripsit ad ipsum Leibnitium \8 Decem. 1674/, ut videre est in Commercio, pag. 39.
Vbi primum Commercium Epistolicum lucem vidit, D. Leibnitius ne libro responderet, prætendit per biennium se librum non vidisse sed ad judicium primarij Mathematici & a partium studio alieni provocasse cum ipse per occupationes diversas rem tunc discutere non satis posset. Et sententiam hujus Mathematici 7 Iunij 1713 datam, in alia charta maxime scurrili die 29 Iulij data descripsit, & \utram/ per Europam spargi curavit sine nomine vel Mathematici vel Impressoris vel Vrbis in qua impressa fuit. Mathematicus in scripto illo edito Bernoullium ipsum scripsit, cum tamen Bernoullius ju{illeg}dex æquus constitui non posset nisi ipse juri omni in methodum infinitesimalem prius renunciasset.
Huic Iudici contrarius est Wallisius Professor \celeberrimus/ Oxoniensis, vir antiquus qui Li{illeg}teras Newtoni anno 16{0}76 ab Oldenburgo acceperat & rem intellexerat ab initio. Et is anno 1695, \quamprimum audivit methodum infinitesimalem apud exteros Leibnitij nomine celebrari,/ in Præfatione ad operum suorum Volumina duo prima, sententiam pro Newtono tulit, Domin{u}m Leibnitio et ejus amicis per ea tempora non mussitantibus. Dixit uti \Wallisius/ quod Newtonus anno 1676 methodum infinitessimalem Leibnitio exposuit per Literas exposuit, tam ante decem annos nedum plures ab ipso excogitatam. Scripsit Iudex ille \prædictus/ literas punctis notatas lucem non vidisse antequam terti{illeg}\um/ Wallisij Volumen prodiret, quod fuit anno 166|9|9. Lucem autem viderunt anno in secundo ejus Volumine quod prodijt anno 1693, \et ad methodum non sunt necessariæ./ In hoc secundo Volumine, pag. 391, 392 & 393, habetur Propositio prima libri Newtoni de Quadraturis, constructa, et exemplis in fluxionibus primis et secundis illustrata. Et hæc fuit Regula omnium prima in lucem edita pro fluxionibus et mome\n/tis secundis tertijs quartis cæteris in infinitum inveniendis, est omnium optima. In eodem secundo Volumine pag. 391, edita etiam fuit Propositio quinta Libri de Quadraturis. Et in hac Propositione habetur methodus illa cujus beneficio Curvarum areæ (id modo fiat) exacte et Geometrice determinentur, uti Newtonus in Analysi sua per series anno 1669 a Barrovio ad Collinium missa, locutus est. Hæc Propositio pendet a quatuor prioribus, ideo Methodus fluxionum quatenus in Propositionibus quin primis Libri de Quadraturis continetur, anno 1669 Newtono innotuit; imo et annis aliquot ante quam Mercatoris Logarithmotechnia prodiret, testibus Barrovio et Collinio in Epistola Collinij ad Thomam Strode in {illeg} Commercio impressa, id est anno 1666 aut antea ut Wallisius affirmavit.
Cæterum Leibnitius in prima sua ad Abbatem de Comitibus Epistola scripsit quod ij qui contra ipsum scripsissent, (id est, Consessus a Regia Societate constitutus) candorem ejus e|a|ggressi essent per interpretationes duras et male fundatas; et quod illi voluptatem non habebunt videndi Responsa ejus ad pusillas rationes eorum qui ipsum {sic} \ijs/ tam male tractassent {sic} \utuntur/. Interpretationes illæ nullius quidem sunt authoritatis nisi quam ab Epistolis derivant: at male fundatas{illeg} esse D. Leibnitius nunquam ostendit.
Subinde \Newtonus/ in prima sua ad Abbatem Epistola, 26 Feb. 171, data, Newtonus his ita respondebat. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile est|s|e facta confutare. Silentium suum hac in re excusa{illeg}|t| allegando impræsentia quod librum non vidisse, & quod otium illi non esset ad examinandum, sed quod orasset Mathematicum celebrem ut hoc negotium in se susciperet — Vtitur et novo prætextu ne respondeat dicendo quod Angli, qui Commercium ediderunt, voluptatete|m|m non habebunt videndi responsum ejus ad pusillas eorum rationes, et proponendo disputationes novas philosophicas ineundas et Problemata solvenda; quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 data, pergebat se excusare ne responderet, dicendo: Vt operi contra me edito perfecte \sigillatim/ respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præterritorum quorum perparvum reminiscor; examinandæ erunt veteres Epistolæ quarum plurimæ sunt perditæ, præterquam quod maxima ex parte non conservari minuta mearum, et reliquæ sepultæ sunt in maximo chartarum acervo quem non possum sine tempore et patientia discutere. Sed otium minime mihi suppete|i|tit, alijs negotijs alterius prorsus generis occupato. Hactenus Leibnitius.
Attamen post ejus mortem (quæ contigit mense proximo Septembri) in Elogio ejus quod in Actis Eruditorum pro mense Iulio anni 1717 impressum est, amici ejus scripserunt quod Commercio Epistolico Anglorum aliud quoddam suum idem amplius opponere decreverat; et quod paucis ante obitum diebus Cl. Wolfio significavit se Anglos famam ipsius lacessentes reipsa refutaturum; quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus inexpectatum, et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum, nihil quicquam affine habens. \Hæc illi./ Verum ex jam dictis patet quod is aliud quoddam cum Oldenburgio Commercium Epistolicum non habuit. Et inventum novum his nihil affine habens ad rem nihil spectat. Missis s{illeg}|o|mnijs, Quæstio tota ad Epistolas antiquas referri debet.
Ad hanc Quæstio
Ad Lectorem \Historia Methodi Differentialis /Infinitesimalis\ ex Epistolis antiquis erata/ Præfatio.
Commercij subsequenti Epistolici exemplaria \tantum/ pauca \a/ ab initio tantum impressa sunt \fuerunt/ et \ad/ \Conse{illeg}|s|sus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca \anno 1712/ imprimi curarunt et ad/ Mathematicos missa|tti| qui soli de his rebus judicare posset|n|t. sed Cum \vero/ D. Leibnitius & ejus amici huic Libro minime responderent, sed ad rixas \novas/ Metaphysicas alias conf{illeg}|u|geret|n|t quæ ad hanc rem nihil spectant, et ad amicos suos rerum mathematicarum ignaros sollicitarent, at adhuc ,|(|D. Leibni \Leibnitio licet/ mortuo) rixentur: v{illeg}|i|sum est \missis rixis/ hunc librum iterum imprimere una cum \ejus/ Compendio disputationis, cui nullum hacten in {illeg} \quod/ in Transactionibus \Philosophicis/ pro mense Ianuario anni 171 impressam est & quib \cui etiam/ nullum responsum adhuc datum est, in lucem iterum emittere, ut a posteris legantur \historia vera ad posteros/ perveniat.
Epistolæ D. Leibnitij ad D. Oldenburgium \scripta quæ hic imprimuntur,/ datæ sunt \habentur/ /sunt\ 3 Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij, \&/ 8 Iunij, 1673; & 15 Iulij, \&/ 26 Octob. 1674; & 30 Mar. 20 Maij, 12 Iulij |&| 28 Decem 1675; & 12 May {sic}, 27 Aug. \&/ 18 Novem. 1676; & 21 Iun e|ij|, \&/ 12 Iulij 1677. Et hæ omnes Epistolæ, si tertium & ultimas quin \excipias/ descriptæ extant in Libris Epistolarum Epistolicis Regiæ Societatis No 6, pag. 35, 34, *, 101, 115, 137; & No 7 pag. 93, 110 213, 235, 149, 189. Et omnium \etiam/ autographa adhuc extant \asservantur/, Si duas tantum excipias, alteram datam 27 Aug. 1676 & a Wallisio in tertio Operum Volumine impressam, et alteram 18 Novem sequentis datas 27 Aug & Novem 1676 datas & in tertio operum Wallij]|i|sij volumine impressas. Epistolæ etiam 15 Iulij & 26 Octob. 1674, 12 Iulij & 28 Decem 1675, & 21 Iunij & 12 Iulij 1677 \etiam/ in tertio etiam \etiam etiam/ Operum Wallij|s|ij Volumine impressæ sunt. Et hæ omnes Leibnij|t|ij Epistolæ una cum Epistolis mutuis Oldenburgij ad Leibnitium quarum exemplaria adhuc asservantur, perpetuum constituunt \inter eos/ per Epistolas commercium ab us Feb 3 \a die 3 Feb/ 1673 ad us mortem Oldenburgij, si modo Epistolæ duæ excipiantur quarum alterâ Leibnitius postulavit Excerpta Epistolarum Gregorij ad se mitti, alterâ|m| Oldenburgius \cum Excerptis illa|i|s/ misit. Epistolæ Leibnitij tractab versabantur circa numeros adus 8 Iunij 1673. Deinde Leibnitio Geometriam altiorem addiscente, commercium per literas aliquandiu quievit, Et 15 Iulij 1714 renovatur|am| est a Leibnitio Epistolam proximam sic incipiente \sic scribente incipiente/: Diu est quod nullas a me habisti habuisti literas. Et ab eo tempore Commercium igitur quod Leibnitius cum Oldenburgio, et Collinio et Newtono habuit hic integrum imprimitur præter dictas duas Epistolas. Nam Collinius & Newtonus cum Leibnitio nullum cum Leibnitio comp|m|ert|c|ium præterquam per Oldenburgium habuerunt. De fide Epistolarum impressarum minime disputatur apud Anglos.
Contra fidem earum scripsit Leibnitius quod Arbitrorum Consessus a R. Societate constitutus omnia ederent\idissent/ {sic} quæ contra Leibnitium facerent, omnia omitte|sis|sent quæ contra Newtonum. Et {h} ut hoc probaret scripsit |sub finem anni 1715,| in Epistola sua prima ad Abbatem de Comitibus, quod in secundo ejus in Angliam itinere, Collinius ostendit ipsi partem Commercij sui cum Newtono in qua Newtonus agnoscebat ignorantiam suam in pluribus, dicebat qu{illeg} (inter alia) quod nihil invenisset circa dimensionem|s| Curvilinearum quæ celebrantur præter dimensionem Cissoidis; Sed Consessus hoc totum suppresserunt.|sit.| Et Newtonus in Epistola sua ad Abbatem 26 Feb. 171 respondit hoc \non omissum fuisse sed/ extare in Epistola a sua ad Oldenburgium 24 Octob. 17|6|76 missa ideo Epistolam illam a Leibnitio visam fuisse in Anglia, hoc vero a Concessu non fuisse omissum sed \&/ impressum \fuisse/ in Comp|m|ercio Epistolico pag. 74. lin. 10, 11. Et subinde D. Leibnitius in Epistola sua ad Abbatem de Comitibus Apr. 9, 1676 agnovit se deceptum fuisse; sed, inquit, exemplum dabo aliud. Newtonus in una Epistolarum ejus ad Collinium agnovit se non posse invenire magnitudinem Sectionum secundarum (vel segmentorum secundorum) sphæroidarum et corporum similium; sed Consessus hunc locum vel hanc Epistolam minime in Commercio Epistolico minime edide|i|ssent\erant/. Newtonus autem in Observa onibus {sic} suis quas in hanc Leibnitij Epistolam fecit, respondit quod si Consessus hoc omisisset, recte \omnino/ fecisset, cum hujusmodi cavillationes ad questionem de qua agitur, nil spectent: Sed quod Consessus hoc non omisit. Collinius \enim/ in Epistola ad |Ia.| Gregorium 24 Decem. 1670, & in altera ad D. Bertet 21 Feb. 1671 (\utris/ impressis in Commercio pag 24, 26,) scripsit quod Methodus Newtoni se extenderet ad secund|a| solidorum segmenta quæ per rotationem generantur. Et Oldenburgius idem scripsit ad ipsum Leibnitium 8 Decem. 1674. Vide Commercium pag. 39. Et Sic \igitur/ Accusatio \ficta/ in fumum evanuit. |Vide Commerc. p. 39|
Vbi primum Commercium Epistolicum lucem vidit, D. Leibnitius ne \ne libro/ responderet \responderet/ prætendit per biennium se librum non vidisse, sed ad judicium primarij Mathematici \& a partium studio alieni/ provocasse cum ipse per occupationes diversas rem tunc discutere non satis posset. Et sententiam hujus Mathematici seu veram seu fictam 7 Iunij 1713 datam in \alia/ charta maxime scurrili die 29 Iulij \data/ descripsit et per Europam spargi curavit sine nomine vel Mathematici vel Impressoris vel Vrbis in qua{illeg} impressa f{illeg}t fuit. Mathematicus |♀|♀ Mathematicus {cæteri} \autem in scripto ill|su|o edito/ Bernoullium citabat|vit| {sic} \citaverat/ tanquam a se diversum. Leibnitius vero sub finem anni 1715 citationem delevit et Mathematicum esse Bernoullium ipsum scripsit cum tamen Bernoullius judex \æquus/ constitui non posset nisi ipse juri omni in methodum infinitesimalem \prius/ renunciasset. Huic Iudici apponendus \contrarius/ et Wallisius Oxoniensis, vir antiquus qui Literas Newtoni anno 1676 ab Oldenburgo acceperat et rem intellexerat ab initio, & is \anno 1695/ in Præfatione ad operum suorum Volumina duo prima anno 1695 judicium \sententiam/ pro Newtono tulit, Dominis Leibnitio & Menkenio per ea tempora non mussitantibus. Dixit uti
Porro \Cæterum/ D. Leibnitius \ut testimonia antiqua eludaret,/ anno 1714 per Epistolam ad D. Chamberlain datam 25 Aug. datam postulavit ut Societas Regia Et anno proximo, per Epistolam ad D. Chamberlain 25 Aug 1714 datam, postulavit ut Societas Regia Epistolas nondum editas ad ipsum mitterent. Nam cum Hannoveram, inquit, rediero, possum etiam in lucem emittere Commercium aliud Epistolicum quod Historiæ Litterariæ inservire possit; et Literas quæ contra me allegari possunt non minus publici juris faciam quæ|a|m quæ pro me faciunt. Hæc Leibnitius. Sed accusationem probare non potuit ut jam vidimus; Et omnes inter ipsum \&/ Oldenburgium Epistolæ quatenus ad hanc rem spectant continua seriæ \jam ante/ impressæ sunt \fuerunt/ præter duas quæ non extant, |& quantum sentio nullius sunt momenti.|
\Cæterum/ In prima contra ipsum \sua/ ad Abbatem de Comitibus \de Comitibus/ Epistola dixit D. Leibnitius quod ij qui contra ipsum scripsissent (id est Concessus a Societate Regia constitutus) candorem ejus agre|gr|essi essent per interpretationes duras et male fundatas; et quod illi voluptatem non habebunt videndi respon{d}|s|a ejus ad parvas \pusillas/ rationes eorum qui ipsum tam male tractassêt. Dicare potius debuit quod dolorem habebusit videndi ejus responsa.. \✝/ ✝ Interpretationes illæ nullius \quidem/ sunt authoritatis nisi quam ab Epistolis derivant; Et D. Leibnitius |at| male fundatas esse \D. Leibnitius/ nunquam ostendit. \Interpretationes illæ nullius \quidem/ sunt authoritatis nisi quam ab ipsis Epistolis derivant: at male fundatas esse D. Leibnitius nunquam ostendit./
\Subinde/ In pr{illeg}|i|{illeg}ima sua ad Abbatem de Comitibus Epistola, 26 Feb. 171 data, Newtonus his ita respondebat. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse factis re facta confutare. Silentium suum hac in re excusat allegando impræsentia quod librum non|dum| vidisset, et quod otium illi non esset ad examinandum, sed quod orasset mathematicum celebrem ut hoc negotium in se susciperet &c. — Vtitur Vtitur et novo novo prætextu ne respondeat, quod scilicet \quod/ \dicendo quod/ Angli, qui Commercium ediderunt voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes, Et ne res et proponendo disputationes novas \novas/ Philosophicas \ineundas/ et Problemata solvenda; quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 data, pergebat se excusare ne responderet, dicendo: Vt operi contra me edito perfecte respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præterritorum quorum perparvum reminiscor; examinandæ erunt veteres Epistolæ quarum pluri{illeg}|m|æ sunt perditæ, præterquam quod maxima ex parte non conservari minuta mearum, et reliquæ sepultæ sunt in maximo chartarum acervo qu{æ} quem non possum sine tempore et pu|a|tientia dis{illeg}t|cuter|e examinare. Sed otium minime mihi suppetit alijs negotijs alterius prorsus generis occupato. Hactenus Leibnitius.
Attamen post mortem ejus (quæ accidit \f{u}it/ proximo mense Septembri \post ejus mortem (quæ contigit mense proximo Septembri/) in Ejus Elogio \ejus/ quod in Actis Eruditorum pro mense Iulio anni 1717 impressum est, amici ejus scripserunt quod Commercio Epistolico Anglorum aliud quoddam suum idem amplius opponere decreverat; et quod paucis ante obitum diebus Cl. Wolfio significavit se Anglos famam ipsius lacessentes reipsa refutaturum; quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus in expectatum, et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum, nil quicquam affine habens. \Cæterum Verum ex jam dictis patet quod is/ Aliud quoddam co|u|m |Oldenburgio Com|mercium Epistolicum habuit \inter seipsum et Oldenburgium habere non potuit. Et/ /non habuit.\ Et Inventum novum his nihil affine habens, ad rem nil|h||il| s|s|pectat. Missis somnijs legantur \missis rixi{illeg}/ Epistolæ antiquæ disputatio tota ad Epistolas antiquas referri debet.
Quo tempore Commercium epistolicum prodijt, D. Leibnitius Viennæ agebat et pretendebat se per occupationes diversas rem tunc discutere non satis posse nec librum vidisse, sed Mathematicum primarium & harum rerum peritissimum & a partium studio alienum orasse ut is librum examinaret, et cum literis 7 Iunij \1713/ datis ita pronunciasse.
a. Hæc Epistola – – – – sententiam. Sed cum Leibnitius nullum aliud huic Libro responsum unquam dedit, visum est
Vt fidem earum labefaceret scripsit Leibnitius anno 1714 Aug 25 ad D. Chamberlain postulavit Leibnitius \Et/ per epistolam {illeg} 25 Aug. 1714 {illeg}t ad D. Chamberlain missam \postulavit/ ut Societas Regia Epistolas — nullius sunt momenti.
Porro \Attamen/ ut accusationem suam probaret scripsit \Leibnitius/ is {sic} sub finem anni 1715 in epistola sua prima ad Ab{a}|b|em {sic} de Commitibus — — quamprimum is \audivit/ methodum differentialem \infinitesimalem/ apud exteros \Leibnitij nomine/ celebrari, audivit in Præfatione
1693. Hæc autem symbola ad methodum non sunt necessaria. A [Algorithmus que{m} Iudex ille {illeg} [Methodi habetur in Propositione illa prima ut \a Wallisio edita/ et in Lemmate 2d Lib. 2 Principiorum] omnium optima. In eadem Propositione habetur Algorithmus methodi, ut et in Lemmate secundo libri Principiorum. Sit æquatio . Fluat sola x et \per Lemma illud/ fluxio totius erit Fluat sola y et fluxio totius erit Fluat sola z et fluxio totius erit . Et Fluant omnes & cum summo fluentium \{illeg} semper semper/ sit , summa fluxionum erit . Sed et idem Algorithmus ex {illeg}|E|pistola Newtoni 10 Decem 1672 ad Collinium data facillime colligitur. In{illeg} eodem secundo volumine pag. 391, edita – – – Wallisius affirmavit.
Proponantur \Sunto/ quantitates datæ a, b, c; fluentes {illeg} x, y, z; fluxiones p, q, r; {illeg} & momenta op, oq, or,: {illeg} & proponatur æquatio quævis . Et per hoc Lemma, si sola fluat x erit fluxio totius \+b{illeg}:/ si sola fluat y erit fluxio totius , \si sola fluat z erit fluxio totius x si/ fluat|n|t s{illeg}re{illeg} & \s{imile}{illeg}/ /omnes\ erit fluxio totius . Et quoniam totum \semper/ æquale est nihilo, erit fluxio totius æqualis nihio|l|o. Si fluant z {illeg} Et hæc est Regula qua solvitur Propositio, Dat Dividatur totum per momentum o et prodibit æquatio quæ ex fluentibus dat fluxiones viz {illeg}. Continent igitur Propositio \hoc/ Scholium solutionem Propositionis \hujus |prædictæ|/ Data æquationes fluentes quotcun a{illeg} quantitates fluentes involvente invenire fluxiones. B{illeg}
Hanc Propositionem posui in Epistola m{illeg}|e|a 24 Octob 1676 ad Oldenburgum data {illeg} ut fundamentum methodi de qua scripseram anno 1671. Eadem \methodus/ facile colligitur ex epistola mea quam ad Collinium 10 Decem 1672 scripsi & cujus \epistolæ/ exemplar ad {illeg} D. Leibnitium missa fuit anno 1676. Sit ACc Linea quævis curva, AB ejus Abscissa BC ejus ord |&| Bb momentum Abscissæ, \Et sint/ BC, bc ordinatæ duæ, & BC et p{illeg} Cc momentum Curvæ{illeg} BCcp parallelogrammum \&/ ce momentum Abscissæ existente BCeb parallelogrammo. Et {illeg} Cc producatur donec Abscissa|æ|m occurrat in D et recta CD Curvam tanget in C {illeg} erunt triangula Cce, DCB similia. Et ubi {illeg} momentum Cc in infinitum diminuitur recta CeD Curvam tanget in C. Hoc omnibus notum est. Iam dicatur AB x et BC y \et sint earum fluxiones p & q/, & habitudo inter x et y exprimatur per \qualibet/ æquationem, quamvis puta . Et per Epistolam illam Regula ducendi Tangentem hæc est Multiplica æquationem|is| terminos per quamlibet progressione|m| Arithmeticam juxta dimensiones y, puta ut et juxta dimensiones y x, puta . B Prius productum erit Numerator, & posterius divisum p ex x denominator fractionis quæ exprimet logitudinem BD, ad cujus extremitatem D, ducenda est Tangens T CD est ergo {l} Est perg per \Regulam in/ hanc Epistola{illeg} Et positam, u|V|t summa omnium terminorum multiplicatorum per indices dignitatum x ac divisorum per x ad summam omnium multiplicatorum per indices dignitatum y ac divisorum per y ita se y ad −BD et ita est C ce ad−eC seu oq ad−op. Ducantur extrema et media in seinvicem et æquatio per o divisa evadet evadet , seu . This is the same equation with that produced by the the {sic} Lemma \And/ when there are but two fluent quantities. And when there are more then three two, the same operation must be applied to them all will give the Equation desired involving the fluxions. The same Proposition is the same w Et in hac operatione fundatur methodus generalis, uti dixi in Epistola illa, quæ {illeg} extendit se, citra molestum ullum calculum, non modo ad ducendum tangentes — eas ad series infinitas, &c. id est in Tractatu illo quem scripsi anno 1671, uti etiam \dixi/ in Epistola mea 24 Oc memini \prædicta/ 24 Octob. ad Oldenburgum data.
Historia Methodi Fluxionum et Methodi Differentialis, ex Epistolis antiquis eruta.
Consessus Arbitrorum a Regia Societate constitutus |Commercij| subsequentis Epistolici exemplaria tantum pauca anno 1712 imprimi curarent, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum vero D. Leibnitius huic Libro minime responderet sed ad Quæstiones Metaphysicas alias ad hanc rem nihil spectantes minime confugeret, et ejus amici adhuc rixentur: visum \est/ hunc Librum una cum ejus Recensione quod in Transactionibus Philosophicis initio anni 1715 impressam fuit, in lucem iterum emittere, ut Historia vera ex antiquis monumentis deducta sepositis rixis ad posteros perveniat.
Epistolæ D. Leibnitij ad Oldenburgum scriptæ quæ hic imprimuntur, datæ sunt 3 Feb. 20 Feb. 30 Mar. 26 Apr. 24 Maij & 8 Iunij 1673; 15 Iulij & 26 Octob. 1674; 30 Mar. 20 Maij, 12 Iulij, & 28 Decem. 1675; 12 Maij, 27 Aug. & 18 Novem. 1676; 21 Iunij & 12 Iulij 1677. Et hæ omnes epistolæ, si tertium et ultimas quin excipias, descriptæ extant in libris antiquis epistolicis Regiæ Societatis Numero 6, pag. 35, 34, *, 101, 115, 137; & No 7, pag. 93, 110, 213, 235, 149, 189. Et omnium etiam autographa asservantur si duas tantum excipias 27 Aug. & 18 Novem 1676 datas \scriptas/ & in tertio operum Wallisij volumine impressas. Epistolæ 15 Iulij et 26 Octob. 1674, 12 Iulij & 28 Decem. 1675, & 21 Iunij & 12 Iulij 1677 in tertio etiam operum Volumine impressæ sunt. Et hæ omnes Leibnitij Epistolæ una cum Epistolis mutuis Oldenburgij ad Leibnitium, quarum Exemplaria adhuc asservantur, perpetuum constituunt inter eos per Epistolas commercium a die 3 Feb. 1673 ad us mortem Oldenburgij, si modo epistolæ duæ excipiantur quarum alterâ Leibnitius postulavit Excerpta Episto ex epistolis Gregorij ad se mitti, alteram Oldenburgus|iu|s cum Excerptis misit. Epistolæ Leibnitij versabantur circa numeros ad us 8 Iunij 1673: deinde Leibnitio Geometriam addiscente, Commercium aliquamdiu quievit, et 15 Iulij 1674 renovatum est a Leibnitio sic scribente: Diu est quod nullas a me habuisti literas. Commercium igitur quod Leibnitius cum Oldenburgo Collinio et Newtono habuit, hic integrum imprimitur præter dictas duas Epistolas. Nam Collinius & Newtonus nulla|u|m cum Leibnitio commercium præterquam per Oldenburgum habuerunt. De fide epistolarum impressarum minime Ad hanc Quæstionem spectat quod D. Wallisius, Professor Oxoniensis celeberrimus, Propositionem primam Libri de Quadraturis, exemplis {illeg} inveniendi dubitatur apud Anglos.
Vbi primum Commercium epistolicum lucem vidit, D. Leibnitius, ne libro responderet, prætendit per biennium se librum non vidisse sed ad judicium primarij Mathematici et a partium studio alieni provocasse cum ipse per occupationes diversas rem tunc discutere non satis posset. Et sententiam hujus Mathematici 7 Iu{lij}nij 1713 datam, in alia charta maxime scurrili die 29 Iulij data describi & utramque imprimi (c|j|ur|v|ante in fallor Menkenio) & per Europam spargi curavit sine nomine vel Mathematici vel Impressoris vel urbis in qua impressa fit fuit. Mathematicus in scripto illo edito Bernoullium citavit tanquam a se diversum; Leibnitius vero sub finem anni 1715 citationem (nescio qua fide) delevit & Mathematicum esse Bernoullium ipsum scripsit, cum tamen Benoullius judex æquus constitui non posset nisi ipse jure omni in methodum infinitesimalem prius renunciasset. In charta illa 29 Iulij 1713 data, Leibnitius epistolam 15 Apr. 1675 datam \scriptam/ qua Oldenburgius series aliquot ad Leibnitium misit, et inter alias seriem Gregorij quam Leibnitius postea ut suam edidit, suspectam reddere conatus est, dicendo: Talen quiddam Gregorium habuisse ipsi Angli et Scoti, Wallisius, Hookius, Newtonus et junior Gregorius ultra triginta sex an{illeg}|n|os ignoraverunt, & Leibnitij esse inventum crediderunt. Verum hæc Epistola in Libro Epistolico Regiæ Societatis asservata, ut et Epistola autographa Leibnitij se series missas recepisse agnoscentis, cum ijsdem Epistolis in Commercio editis, coram Come|i|te de Kilmansegger, Abbate de Comitibus, ministris aliquot publicis exterorum Principum, & alijs exteris non paucis Anno 1715 in domo Regiæ Societatis collatæ sunt, & impressio probata:
Sed et Leibnitius ipse anno proximo in Epistola sua ad Cometissam de Kilmansegger 18 Apr. data & a D. Des m|M|aiseaux edita, idem agnovit, narrando historiam Epistolis in Commercio editis conformem. Narrat enim quomodo Londinum venit \initio/ anno|i| 1673, cum Oldenburgo amicitiam contraxit, a D. Pellio apud D. Boyliam audivit quod \Mercator/ seriem invenisset pro Hyperbola, librum Mercatoris comparavit & secum asportavit in Galliam, ibi sub Huygenio cœpit meditationes Geometricas gustare, parvo tempore multum profecit, & invenit seriem suam pro circulo; dein reliqua narrare sic pergit. Nous crûmes que j'étoi le primier qui avois fait quelque chose de tel sur le circle; & j'en écrivis sur ce ton-la [15 Iulij & 26 Octob.] a M. Oldenbourg en 1674 avec qui auparavant je ne m'étois point entretenu de telles choses, quo|i|que nous eussions échangé deja pleusieurs Lettres [Feb. 20, Mar. 30, Apr. 26, Maij 24, Iunij 8.] M. Oldenburg donné des choses semblables, non seulment sur le Cercle, mais encour sur toutes sortes d'autres figures, & [15 Apr. 1675] m'envoy a des essay|i|s. Cependant le mien [Londinum missa 27 Aug. 1676] fut assez applaudi par M. Newton même. Il est trouve par apres [anno 1712] qu'un nomme M. Gregory avoit trove justement la même series que moi. Mais c'est ce ju'j'appris tard. Hic Leibnitius agnoscit se recepisse ab Oldenburgo des assais exempla serierum Newtoni, |.| \Hæc exempla reperiuntur in Epistola Oldenburgij 15 Apr 1675 & non alibi. Et/ et {sic} inter hæc exempla erat series Gregorij ut in Commercio videre licet. At Wallisius Newtonus Gregorius junior & Huygenius hanc seriem a Gregorio ad Collinium & Oldenburgium ab Oldenburgio ad Leibnitium missam fuisse per ea tempora ignorabant.
Contra fidem Epistolarum in Commercio editarum scripsit insuper Leibnitius quod Arbitrorum Consessus a R. Societate constitutus omnia edidissent quæ contra ipsum facerent, omnia omisissent quæ contra Newtonum: Et præterea per Epistolam 25 Aug. 1714 ad D. Chamberlain datam, postulavit ut Societas Regia Epistolas nondum editas ad ipsum mitterent. Nam cum Hanoveram, inquit, rediero, possum etiam in lucem immittere Commercium aliud Epistolicum quod Historiæ Litterariæ inservire possit; et Literas quæ contra me allegari possunt, non minus publici juris faciam, quam quæ pro me faciunt. Hæc Leibnitius. Sed omnes inter ipsum et Oldenburgium, \Epistolæ/ quatenus ad hanc rem spectant, continua serie jam ante in Commercio edito impressæ sunt, præter duas quæ non extant, et nullius est momenti videntur.
Attamen ut accusationem suam probaret, scripsit Leibnitius sub finem anni 1715, in epistola sua prima ad Abbatem de Comitibus quod in secundo ejus in Angliam itinere Collinius ostendit ipsi partem Commercij sui in qua Newtonus agnoscebat ignorantiam suam in pluribus, dicebat (inter alia) quod nihil invenisset circa dimensiones Curvilinearum quæ celebrantur præter dimensionem Cissoidis; Sed Consessus hoc totum suppressit. Et Newtonus in Epistola sua ad ‡ ‡ ad Abbatem 26 Feb. 171 respondit hoc non fuisse ommissum, sed extare in epistola sua ad Oldenburgium, 24 Octob. 1676 Abbatem Oldenburgum 24. Octob. 1676 missa, et impressum fuisse in Commercio Epistolico pag. 74 lin. 10, 11. Et subinde Leibnitius in Epistola sua ad Abbatem de Comitibus April. 9, 1716 agnovit se deceptum \errasse/; Sed, inquit, exemplum dabo aliud. Newtonus in una Epistolarum ejus ad Collinium agnovit se non posse invenire magnitudinem Sectionum secundarum (vel segmentorum secundorum) sphæroidum & corporum similium; sed consessus ha|u|nc locum omisit vel hanc Epistolam misit in Commercio epistolico minime edidit. Newtonus autem in Observationibus suis quas in hanc Leibnitij Epistolam scripsit, respondit quod {illeg}|s|i omisisset, recte omnino fecissit, cum hujusmodi cavillationes ad Quæstionem de qua agitur nil spectent; sed quod Consessus hoc non omisit. Collinius in Epistola ad D. Gregorium 24 Decem 1670, et in altera ad D. Bertet 21 Feb. 1671 (utris impressis in Commercio pag. 24, 26) scripsit quod methodus Newtoni se extenderet ad secunda solidorum segmenta quæ per rotationem generantur. Et Oldenbur gius idem scripsit ad Leibnitium ipsum 8 decem 1674, ut videre est in Commercio, pag. 39
Cæterum Leibnitius in prima sua ad Abbatem de Comitibus Epistola scripsit quod {y} \eos/ qui contra ipsum scripsissent (id est Consessus a Regia Societate constitutus) candorem ejus aggressos essent per interpretationes duras et male fundatas; et quod illi voluptatem non habebunt videndi Responsa ejus ad pusillas eorum rationes eorum qui ijs tam male utuntur. Interpretationes illæ nullius quidem sunt authoritatis nisi quam ab Epistolis derivant: at male fundatas esse Leibnitius nunquam ostendit.
Subinde \verò/ Newtonus in prima sua ad Abbatem Epistola, 26 Feb. 171, ita respondebat \rescripsit/. D. Leibnitius hactenus respondere recusavit, bene intelligens impossibile esse facta confutare. Silentium suum hac in re excusat allegando impræsentia quod librum non vidisset, & quod otium illi non esset ad examinandum, sed quod orasset Mathematicum celebrem ut hoc negotium in se susciperet. — Vtitur et novo prætextu ne respondeat dicendo quod Angli qui Commercium ediderunt, voluptatem non habebunt videndi responsum ejus ad pusillas eorum rationes, et proponendo disputationes novas philosophicas ineundas, & Problemata solvenda; quæ duo ad rem nil spectant.
D. Leibnitius autem in proxima sua ad Abbatem Epistola 9 Apr. 1716 \data, & per Galliam in Angliam missa/, pergebat se excusare ne respondeat, dicendo: Vt operi contra me edito sigillatim respondeam, opus erit alio opere non minore quam hoc est; percurrendum erit corpus magnum minutorum ante annos 30 vel 40 præteritorum quorum perparvum reminiscor; examinandæ erunt veteres epistolæ quarum plurimæ sunt perditæ, præterquam quod maxima ex parte non conserva- {sic} minuta mearum, & reliquæ sepultæ sunt in maximo chartarum acervo quem non possum sine tempore et patientia discutere. Sed otium minime mihi suppetit, alijs negotijs alterius prorsus generis occupato. Hæc Leibnitius.
Attamen post ejus mortem (quæ contigit mense proximo Septembri) in Elogio ejus quod in Actis eruditorum pro mense Iulio anni 1717 impressum fuit, amici ejus scripserunt quod Commercio Epistolico Anglorum aliud quoddam suum, idem amplius, opponere decreverat; et quod paucis ante obitum diebus Cl. Wolfio significavit se Anglos famam ipsius lacessentes reipsa refutaturum: quamprimum enim a laboribus historicis vacaturus sit, daturum se aliquid in Analysi prorsus inexpectatum et cum inventis quæ hactenus in publicum prostant, sive Newtoni sive aliorum, nil quicquam affine habens. Hæc illi. Verum ex jam dictis patet quod |eum| aliud quoddam cum Oldenburgio commercium Epistolicum non habuisse. Et inventum novum his nihil affine habens ad rem nihil spectat. Missis somnijs, Quæstio tota ad Epistolas antiquas referri debet. \✝/ ✝ Et his præmissis legatur jam Recensio Commercij Epistolici & consulatur Commercium ipsum ubi de factis dubitatur. [Et hæc Quæstio est utrum Leibnitius sit inventor Methodi de qua disputatur, & pro Differentijs igitur Leibnitianis Newtonus adhibet semper adhibuit [ex {illeg} quo usus est hac methodo] adhibuit fluxiones, quemadmodum Honoratus Fabrius motuum progressus Cavallerianæ methodo substituit.
Ad hanc quæstionem spectat quod D. Wallisius Professor Oxoniensis celeberrimus, Propositionem primam Libri de Quadraturis edidit \exemplis inveniendi fluxiones primas et secundas illustratam edidit anno 1693,/ in Volumine secundo operum suorum pag. 392|.| exemplis inveniendi fluionies primas et secundas illustratam. Et hæc fuit Regula omnium prima quæ lucem vidit, pro fluxionibus secundis, tertijs, quartis cæteris in infinitum inveniendis. Est Regula verissima et optima. Eandem Newtonus demonstravit synthetice in Lemmate secundo Libri secundi Principiorum \anno 1686/: cum Propositionem sine demonstratione prius posuisset in Epistola ad Oldenburgum 24 Octob. 1676 scripta, & ibi significasset eandem esse fundamentum methodi generalis de qua scripserat tum ante annos quin id est anno 1671. In hujus Propositionis solutione habetur Algorithmus methodi Regula differentialis \aliorum/ |pro differentijs secundis tertijs quartis &c lucem non vidit ante annum 1696.|
Ad eandem Quæstionem spectat quod Iacobus Gregorius scripsit ad Collinium 5 Sept. 1671|0|, se ex Barovij methodis Tangentes ducendi, invenisse methodum generalem et Geometricam ducendi tangentes ad omnes curvas sine calculo. Et quod Slusius se similem methodum habere mense Octobri vel Novembri 1672 scripsit ad Oldenburgum. Et quod Newtonus ad Collinium 10 Decem. 1672 scripsit in hæc verba: Ex animo gaudeo D. Barrovij nostri Reverendi Lectiones mathematicas exteris adeo placuisse, ne parum me juvat intelligere eos [Slusium et Gregorium] in eandem mecum incidisse ducendi Tangentes methodum &c. Et subinde Newtonus in eadem Epistola methodum suam tangentes ducendi descripsit, et addidit hanc methodum esse \specimen vel/ Corollarium methodi generalis solvendi abstrusiora Problemata & non hærere ad quantitates surdas. Epistolas totas Gregorij et Newtoni habes infra in Commercio Epistolico, et earum exemplaria Oldenburgus 26 Iunij 1676 misit ad Leibnitium inter Excerpta ex Gregorij Epistolis; & Leibnitius \incidit in/ Prælectiones Barrovij in Anglia mense Octobri anni 1676 & non prius, ut ipse asserit in Epistola sua ad Abbatem de Comitibus 9 Apr. 1716.
Sunto jam ut in Epistola Newtoni, \quantitates datæ a, b, c/ Abscissa , Ordinata & linea curva AC; & proponatur æquatio quævis quantitates \illas/ duas fluentes x et y involvens, puta , {illeg} ut in eadem Epistola, et ducenda sit recta CD quæ Curvam tangat in C et Abscissam utrin productam secet in D. Multiplicetur omnis æquationis terminus per indicem dignitatis y x et productum divisum per x (videlicet ) vocetur R. Multiplicetur omnis æquationis terminus per indicem dignitatis y et productum divisum per y (videlicet ) vocetur S. Et per Regulam in Epistola \illa/ Newtoni traditam erit subtangens , vel potius propterea quod AB et BD ducantur ad partes contrarias. Et hæc est Regula ducendi Tangentes quam Newtonus in Epistola illa posuit ut partem aliquam vel specimen vel Corollarium methodi suæ generalis. Methodus vero generalis ex hoc ejus \specimine/ exemplo sic \tota ex parte, vel Propositio fundamentalis ex Corrolario suo/ deducitur Iam ut methodus hæcce \illa/ generalis ab hæc hocce ejus exemplo \deductus/
D Agatur jam secundum methodum Barrovij a Gregorio promotam Ordinata {illeg}|n|ova EF priori BC proxima & compleatur parallelogrammum BCGE, et pro differentijs vel momentis BE vel CG et GF scribantur p et q; et erit \FG.CG∷CB.BD id est/ q.p∷y.BD seu , et facta reductione, . Hæc æquatio ubi duæ sun tantum sunt fluentes involvit earum momenta. Et ubi plures sunt fluentes, operatio similis ad omnes applicata dabit æquationem involventem omnium momenta. Et Theorema hocce quod sic ex specimine in Newtoni Epistola posito facillime deductur, illud omne comprehendit quod Leibnitius ad Newtonum anno 1677 rescripsit, ut et illud omne quod in Actis Eruditorum anno 1684 in lucem edidit. Hoc Theorema exhibet solutionem Propositionis primæ libri de Quadraturis, ideo Solutio P {illeg}p|ro|positionis illius Newtono innotuit anno 1672.
In libro de Analysi per Series Fluxiones ac Differentias anno 1711 a Ionesio edito, extat Fragmentum Epistolæ Newtoni ad Collinium Novem 8, 1676 datæ, his verbis: Nulla extat Curva cujus Æquatio ex tribus constat terminis, in qua, licet quantitates incognitæ se mutuo afficiant, & indices dignitatum sint surdæ quantitates (v.g. , ubi x designat basin, y ordinatam; λ, μ, σ, τ Indices dignitatum ipsius x & y & a, b, c quantitates cognitas \una/ cum signis suis + & −) nulla inquam hujusmodi est Curva, de qua, an quadrari possit necne, vel quænam sunt figuræ simplicissimæ quibuscum comparari possit, sive sint Conicæ Sectiones sive aliæ magis complicatæ, intra horæ Octantem respondere non possim Deinde methodo directa et brevi, imo methodorum omnium generalium brevissima, eas comparare queo. Quinetiam si duæ quævis Figuræ per hujusmodi Æquationes expressæ proponantur, per eandem Regulam, eas, modo comparari possint comparo. — Eadem methodus æquationes quatuor terminorum alias complectitur, haud tamen adeo generaliter. Hactenus Newtonus. Hæc autem \H Hæc autem fiunt per Prop 10 Libri de quadraturis &/ abs methodo Fluxionum fieri non possunt: indicant vero methodum quadrandi curvilineas in libro de Quadraturis expositam, \& methodum fluxionum in qua \methodus altera {illeg}/ fundatur/ eous promotam fuisse ante annos 8 Novem. 1676.
|2| In Epistola Newtoni ad Oldenburgum 24 Octob. 1676, ponuntur | extant Ordinatæ Curvilinearum quarum collationes Cum Conicis sectionibus Newtonus in Catalogum tunc olim retulerat \id est anno 1671 aut antea. Nam anno 1676 Newtonus annos quin ab h{illeg}|{a}|c methodo promovenda abstinuerat./. {sic} Earundem Curvarum et eodem ordine et modo descriptarum Collationes cum Conicis Sectionibus ponuntur in Tabula posteriore \duarum quæ in Tab{illeg} Scholio ad Propositionem decimam/ in Libr {illeg}|i| de Quadraturis \habentur/: ideo Tabula illa composita fuit et methodus quadrandi curvilineas eous producta annis aliquot \minimum quin/ ante annum 1676. Id quod abs methodo Fluxionum fieri non potuit.
Propositionem quintam libri de Quadraturis Wallisius edidit anno 1693 in secundo operum suorum Volumine pag. 391. Hac Propositione quadrantur Figuræ accurate et Geometrice si fieri potest. \☉/ ☉ Hoc artificium anno 1669 Newtono innotuit,[48] uti patet ex \affirmatur in/ Analysi per series eo anno quam Barrovius eo anno ad Collinium misit; imo et annis aliquot ante quam Mercatoris Logarithmot{illeg}|e|chnia prodiret teste Barrovio id est Anno 1666 aut antea, uti patet per \in/ Epistolam Collinij ad D. Strode.[49] Atqui Propositio illa quinta pendet a Propositionibus quatuor prioribus: Ideo Methodus fluxionum quatenus continetur in Proposi\ti/onibus quin primis libri Principiorum de Quadraturis Newtono innotuit anno|i|s 1666 aut antea annis aliquot et antequam prodiret Mercatoris Logarithmotechnia, \teste Barrovio/ id est anno 1666 aut antea; uti Wallisius etiam testatus est.
Et his præmissis legatur jam Recensio Commercij Epistolici & consulatur Commercio ipsum ubi de factis dubitatur. Partem hujus Propositionis Newtonus posuit in Epistola 24 Octob. 1676 ad Oldenburgum. In Analysi sua per series dixit quod Analysis illius beneficio Curvarum areæ & longitudines (id modo fiat) exacte & Geometrice determinentur ideo quinta illa Propositio tunc illi innotuit. Collinius in Epistola sua ad Thomam Strode 26 Iuly 1672 data scripsit in hæc verba. Mense Septembri 1668, Mercator Logarithmotechniam edidit suam — Haud multo postquam in publicum prodierat liber, exemplar ejus Cl. Wallisio Oxonium misi — alium Barrovio Cantabrigiam qui quasdam Newtoni chartas [sc. Analysin per series] extemplo remisit: e quibus et ex ALIIS quæ OLIM ab Auctore communicata fuerunt, patet illam Methodum a dicto Newtono aliquot annis antea excogitatam et modo universali applicatam fuisse: ita ut ejus ope in quavis Figura curvilinea proposita quæ una vel pluribus proprietatibus definitur, Quadratura vel Area: dictæ figuræ ACCVRATA SI POSSIBILE sit, sin minus infinite vero propinqua — obtineri queat: id est accurata si series abrumpitur, sin minus infinite vero propinqua. Testibus igitur Barrovio et Collinio Newtonus aliquot annis antea quam prodiret Logarithmotechnia illa, adeo anno 1666 aut antea, methodum habuit quadrant|d|i curvilineas per series accurate si series abrumpitur & finita evadit, Sin minus, quamproxime Et hoc fit per Propositionem quintam libri de Quadraturis. Hæc autem Propositio pendet a quatuor prioribus; et propterea methodus serierum & methodus fluxionum quatenus continentur in Propositionibus quin primis libri de Quadratura Curvarum Newtono innotuere anno 1666 aut antea testibus Barrovio et Collinio. His addi potest testimonium Wallisij qui in Præfatione ad Operum suorum Volumen primum scripsit quod Newtonus in Literis \suis/ 13 Iunij & 24 Octobris {illeg}|1|676 methodum hanc Leibnitio exposuit tum ante decem annos nedum plures ab ipso excogitatam, id est anno 1666 aut antea ut supra. Addi etiam potest testimonium N. Fatij de Duillier qui chartas antiquas Newtoni viderat & inde contra seipsum testimonium perhib{it}uit.
Historia Methodi infinitesimalis ex Epistolis antiquis eruta.
Consessus Arbitrorum a Regia Societate constitutus Commercij subsequentis Epistolici exemplaria tantum pauca anno 1712 imprimi curarunt, et ad Mathematicos mitti qui soli de his rebus judicare possent. Cum vero D. Leibnitius et ejus amici huic Libro minime responderet, sed ad rixas Metaphysicas alias confugeret, quæ ad hanc rem nihil spectant, ant \et ejus amici/ adhuc (D. Leibnitio licet mortuo) rixentur: visum est hunc librum una cum ejus compendio quod in Transactionibus Philosophicis pro mense Ianuario anni 171 impressum est \fuit/ & cui nullum adhuc responsum datum est, in lucem iterum emittere, ut historia vera ex antiquis monumentis deducta sepositis cavillationibus ad perveniat posteros perveniat.
Quare si multiplicetur omnis æquationis propositæ terminus per indicem dignitatis quantitatis cujusqu|ꝫ|i{s}|q|ꝫ fluentis quam involvit, & in singulis multiplicationis|b|us mutetur dignitatis latus in fluxionum suam, \&/ aggregatum factorum omnium sub proprijs signis nihilo æquale statuatur, habebitur æquatio{illeg} nova fluxiones involvens. Exhibet igitur hoc Scholium solutionem Propositionis præfatæ
— year 1670. From this method & his own Mr Gregory deduced a method of Tangents wthout computation & notified it to Mr Collins in a letter dated 5 Novem. 1670, & this Letter was sent to Mr
Le Pag 1. lin. 1. \a Auctorem hu/ Hæ{illeg}c Epistolam a |D.| Leibnitio scriptam fuisse suspicio est \videtur/ quod Auctor utatur verb{illeg} voce illaudabili qua D. Leibnitius uti solebe|a|t, tum maxime quod narret quæ in|ter| Hugenium et Leibnitium {illeg} Hugenium & Leibnitium Parisijs anno 1675|4| vel 1675 {illeg}agentes \id est ante annos 38/ \ante annos 38 transacta sunt/ transacta sunt.
b \lin 2/ Annon D Leibnitius \Author hujus Epistolæ/ ex Commercio Epistolico hauserit quod sub finem Epistolæ dicit de serie Gregorij.
c lin. 11. \Newtonus Scholium ad Prop. Lem II Lib. II Princip. opposuit./ D. Leibnitius & ejus amici nihil contra Wallisium movere ausius est \sunt/, \qui/ anno 1695 in Præfatione ad Volumen primum operoum {sic} morum scripser|it|it quod Newtonus hanc Methodum Let \Leibnitio/ per Leteras {illeg}|a|nno 1676 exposuis|t|se tunc ante decem annos nedum plures expos ab ipso {illeg}itam \excogitatam/.
d lin 16|5|. Fidem \olim/ habuit Epistolis Newtoni {illeg} ejus Analysi per series anno 1676 visis, ut \anno 1676 visis uti et/ et {sic} ejus Principijs Philosophiæ
e Pag. 2. lin 9 \recurrit/ ad judicium {illeg}|S|ui ipsius, dum Iudicem propa|o|nat sine nomine.
f l 18. Algorithmus habetur in Lem 2. Lib II. Princip. ut et in Epist ad Collin. 10. Decem. 1672 & \prius/ in Analysi per series.
g lin. 22. Vtitur \quando/ alijs symbolis ut ov, oy, quando \vel A, B, a, b, &c/
h lin. 24. In \Nullam habuit occasionem./ Principij|a| Naturæ Mathematicis|a| invenie|t|bat per synthesis per Anlysin {sic}, in lucem ediba|di|t per sythesin {sic} more Veta|e|rum
i lin. 29. Tertium Volumen prodijt anno 1{illeg} 17|6|99. Le|i|teræ punctatæ comparuerunt in secundo Volumine operum Wallisij anno 1693 ante quam Calculus differentialis ubi celebrari cœpit.
k Pag. 3. l. 1. Scripsit Principia per s|S|ynthesin ut jam dictum est.
l lin 4. Nullam dedit Regulam in \In libro/ Principij|o|rum \Newtonus/ nullam dedit Regulam circa gradus ulteriores \differentiandi quantitates fluentes/ præterquam in Lem II Lib. II. Et Regula illa verissima est et ad gradus ulteriores omnes facile applicatur.
m lin 4. N|ic.| Bernoullius nomine patrui sui Ioannis New anno 1712 Newtonū admonuit de lapsu aliquo \esse lapsum aliqui|e|m/ in resolutione Prob. 3 lib 2 Princip. Newtonus \redditis gratijs rem examinavit/ lapsum invenit in situ tangentis et redditis gratijs eundem correxit.
n lin 5. Recta methodus differentiandi differentialia habetur is|n| Prop. 1 Libri de Quadratura {illeg} Curvarum. Hanc Propositionem exemplis in differentijs primis & secundis illustratam Wallisius edidit anno 1693 in secundo operum suorum Volumine anno 1693 edidit. Et hæc fuit Regula omnium prima quæ lucem vidit differentiandi differentialia. Post tres annos Marchio Hospitalius Regulam similem edidit, et tum demum Methodus differentiandi differentialia cœpit alijs esse familiaris.
o. lin 22. Tale quiddam Gregorium habuisse, ipse tandem Leibnitius agnovit in Epistola sua ad Dominam \Comitissam de/ Kilmansegger non longe ab initio.
<235v>p lin 31. Hanc methodum generalem Newtonus habuit \posuit descripta in Epistola sua 24 Octob. 1676/ anno 1676 \ut supra/ ut apparet ex ejus epistola 24 Octob. {a}nni illius ad Oldenburgum data.
q {illeg} Pag 4 lin 7. V Videant Geometræ annon lapsus fuerit Gregorius Leinitius in Tractatu suo de motuum cœlestium causis ubi conatus est demonstrare Propositionem Kepleri quod Planetæ moventur in Ellipsibus solem habentibus {tnun}feriore foco & radij|o| ad solem ducto areas describere temporibus proportionales.
A. Pag. 2. lin. 7.
B Pag 2. lin 9. Huic Iudici opponendus est Wallius homo antiquus qui {illeg} Literas Newtoni \12 Iunij & 24 Octob 1676 datas/ acceperat ab Oldenburgo \eodem/ anno 1676 et rem omnem moverat ab initio, & anno 1695 in Introductione ad Operum suorum Volumen tertium \primum/ hanc \hanc/ sententiam tulit{illeg} pro Newtono tulit: \{illeg} \scilicet// quod Newtonus per Literas illas anno 1676 sententiam Methodum Leibnitio exposuit tum ante decem annos nedum plures ab ipso excogitatam.
Oldenburgus \15 Apr/ misit seriem|s| ad Leibni Gregorij /aliquot Gregorij & Newtoni\ ad Leibnitium 15 Apr. & Leibnitius \20 Maij/ agnovit se {illeg} epistolam Oldenburg \series Epistolam Oldenburgi seriebus refertam/ accepisse & hujus Epistolæ asservatur autop|g|raphum /autographon Leinitij adhuc asservatur\ ut supra. Sed p|q|uæ per ea tempo per ea temp
Fidem habuit non Newtono dictandi sed rebus a Newtono scriptis: et quæ ex scriptis ejus didicit paulatim minuit ac tandem negavit. In Epistola sua ad Oldenburgum 27|1| Iunij Aug. 1677 data 1677 data
Fidem habuit \non Newtono falle\a/ti sed/ Literis Newtoni methodum ann describentis anno {illeg} {illeg} antequam ante annum 1677; id est antequam \ipse/ Leibnitius] eandem intellexerat. Fidem habuit Principijs Philosophiæ mathematicis ubi scripsit in Literis ad Newtonum data Martij 1693 datis, quod \is/ edito Principiorum opere \non affirmavit sed]/ ostendit patere sibi quæ Analysi receptæ non subsunt, [ut et i|u|bi scripsit |in| Actis Eruditorum pro mense Maio anni 1700, ubi scr agnovit quod methodum qua curva celerrimi descensus \& solidum minimæ resistentiæ/ inventa fuit|er{a}|t, ante Newtonum nemo specimine publice dato se habere probavit] per specimine illud intelligens solidum minime resistentæ. Sed quæ didicerat paulatim ex ejus memoria \paulatim/ elapsa sunt. [In Epistola ad Oldenburgum 21 Iunij 1677 agnovit Newtoni methodum ad Tangentes & Quadraturas se s|e|xtendere {illeg} ubi elementa I In Actis Eruditorum pro Mense Maio 1700 scripsit: Certe cum Elementa Calculi mea edidi . . . . . . . . . . ejus satis intellexi. Iam ex candore suo {illeg} fidem habuit \tantum habuerat/ Newtono sed re attentius considerata suspicari cœpit Calculum fluxionum ad imitationem calculi differentialis formatum fuisse. Ut et ubi scripsit in Actis Eruditorum pro mense Maio anni 1700 quod cum Elementa calculi sui edidit anno 1684, ne constabat ibi {si}|q|uidem sibi aliud se Inventis, ejus in hoc genere, quam quod ipse olim significavit in literis posse se tangentes invenire \non/ sublatis imationalibus {sic} |&c.| — sed \quod/ majora multo consecutum Newtonum, viso demum libro Principiorum ejus satis intellexit {illeg} Et post aliqua, de method{o}|{i}| illius parte sublimiore |resistentiæ & Curva celerrimi descensus inventa fuere| verba faciens addit: Quam methodum ante Newtonum nemo specimine publice dato se habere probavit.
L Consessui selectorum arbitrorum
l E{x} \Leibnitius procat ad/ Iudicium hominis novi & ignoti contra judicium Wallisij.
m Hic |I.| Bernoullium|s| citatorum ab auctore Epistolæ \Auctor Epistolæ I. Bernoullium \hic/ citavit/ ut a seipso diversus|m|; Et citationem Leibnitius \insuper/ probavit mittendo \eam/ in lucem. At post biennium Leibnitius in ve\r/sione Gallica citationem (nescio qua fide) delevit, & scripsit Aut|c|torem Epistolæ esse Bernoullium ipsum{illeg}: cum tamen Bernoullius|m| se auctorem esse methodi integralis \velint esse/ socium epi Leibnitij in e|i|nventione methodi integralis quæ pars est inversa methodi fluxionum; & [eo nomine judex esse non possit] qui a partibus stat, judex esse non possit Et præterea Bernoullius nondum agnovit se epistolam illam scripsisse \{illeg}dem esse non possit qui a parte ulterutra statuo/ et qui a parte stat ælterutra judex esse non possit. id est annis do|u|obus antequam fama calculi differentialis apud e Wallisius audivit calculum differentialem apud exteros celebrari.
k. e|E|odem sensu \Newtonus/ utitur litera o in Introductione ad librum de Quadraturis, {illeg} utitur etiam literis punctatis. Et h|H|ic usus commoda methodi minime destruit Et in libro illo utitur tamen literis punctatis \in quo \ubi methodum \Fluxionum expressa/ docet.//
m Eminens ille Mathematicus est Iohannes Bernoullius. Hujus nepos Nicolaus anno 16712 Nomine patrui sui Newtonum admonuit esse lapsum aliquem in resolutione Prob|p| 3 lib. 2 Princip. Newtonus redditis gratijs lapsum a{t} rem examinavit lapsum invenit in situ tangentis & correxit Bernoullius credidit lapsum fuisse in differentijs secundis. Lapsus|m| est etiam Leibnitius \admisit/ in Tractatu de motuum cœlestium causis ubi celebrem Kepleri Propositionem a Newtono demonstratatam ipse etiam demonstrare conatus est, sed frustra.
Tale quiddam Gregorium habuisse, multi extranei & inter alios Comes de Kilmansegg' \viderunt/ collatis Epistolis inter Leibnitium et Oldenburgum 15 Apr \& 20 May {sic}/ 1675 cum in Commercio editis cum monumentis ex quibus editæ sunt. Et ipse tandem Leibnitius idem agnovit in Epistola sua ad Cometissam de Kilmansegger 18 Apr. 16 1716 non longe ab initio, his verbis: Il s'est trouve par après, qu'un nommé M. Gregory avoit trouvé just\e/ment l{illeg}|a| même series que moi. Mais c'est qu ce que j'appris tard.
[1] Transact p. 20{4}
[3] Commerc. Epist. p. 32, 37, 39, 42, 44, 45, 58, 87, 88, 96.
[4] Commerc. p Recueil Dni Des Maizeaus Tom 2 p. 36, 50, 119.
[5] Com p
[6] Recuil Dni Des Maizeaux Tom 2. p. {illeg}|3|1, {illeg} 36|2|. {illeg} 33.
[7] Ib. p. {illeg} 31, 32.
[8] des essais
[9] Com. p. 45.
[10] Com. p 42
[11] Recueil Dni Des Maizeaus Tom. 2. p. 3|4|, 4|5|, 36, 52, 53.
[12] Ib. p. |1|24.
[13] Ib. p. 5.
[14] Ib. p. 19.
[15] Ib. p. 53
[16] Ib. p. 82.
[17] Commerc. p. 24, 26
[18] Ib. p. 4.
[19] Ib. p. 16 17
[20] stet Ital.
[21] Ib. p. 52
[22] Analys. p. 38
[23] Com. p. 76
[24] Ib. p. 22 Com. p. 22
[25] Ib. p. 29 Com. p. 29.
[26] Com. p. 22, 29, 47.
[27] 2
[27] 2d.
[28] des essais
[29] No XXXVI.
[30] No. XXXVII.
[31] No XLIV.
[32] Com. ep. No LVII.
[33] Commerc. Epist No XII
[34] Com. Ep. No LVIII.
[35] Ib. No XI.
[36] Ib. No. XXIV
[37] Com. Ep. No LIX.
[38] Ib. No LVII.
[39] Ib. No LVII.
[40] Ib. No XVI.
[41] Ib. No XXVI.
[42] Ib. N XLVI
[43] Com. E. No. XLIV
[44] Com. Ep. No. LVII.
[45] 3
[45] 3d
[46] des Essais
[47] Note N=1 but uN=2
[48] Com. Ep. p. 18
[49] Com. Epist. p. 28, 29.