<505r>

Epistolæ sequentes a D. Leibnitio cum amicis suis in Gallia et alibi communicatæ, ad controversiam præcedentem spectant. Prima ac tertia est ipsius Leibnitij, secunda Newtoni, omnes ad amicum communem.

P. S.

shall have more Coppy Tomorrow R Mount

This To be at the Top of the first page of the French Coppy I pray Look me T{ine} you

<506r>

Epistolæ sequentes a D. Leibnitio cum amicis suis in Gallia et alibi communicatæ ad controversiam præcedentem spectant. Prima ac tertia est ipsius Leibnitij, secunda Newtoni, Omnes ad amicum communem Prima non est Epistola tota, sed Post principium.

<506v>

— I do not know. But this know {th}at M{r} Bernoulli {le}arn{t} {the} {differen}{ti}al method from Mr Leibnits & is the chief of his disciples & gave his opinion for his Master in the Acta Leipsiensia before the Commercium came abroad at which time he was homo novus et rerum anteactarum parum peritus (as Mr Leibniz objected against Dr Keill) & that what he wrote afterwards was in his own defence. For understanding the last words they may be compared with what he says of the Differential method in the beginning of his Letter of 27 Aug. 1716.

But Dr Wallis was homo vetus et rerum anteactarum maxime peritus, having received copies of Mr Newton's two Letters & other notices from Mr Oldenburgh in the year 1676 which things were transacted between Mr Newton & Mr Leibnitz And in the the beginning of the year 1695 when he first heard of the Differential Method & that it began to spread in Holland as a new method invented by Mr Leibnitz, in opposition to that report he stopt the Press at Oxford where the Preface to the two first Volumes of his own works were printing that he might insert that Paragraph which you will find in it concerning this matter, & therin declared what he had learnt from those & other Letters many years before, namely that Mr Newton in his said two Letters had explained to Mr Leibnitz that very method called by Mr Newton the Method of fluxions & by Mr Leibnitz the Differential method, & had invented it ten years before the writing of those Letters or above, that is in the years 1666 or before, or about 30 years before Dr Wallis heard any thing of the Differential method of Mr Leibnitz. This the Doctor wrote in March 1695 without being contradicted in those days. The Editors of the Acta Eruditorum in giving an account of those two Volumes cited part of that paragraph in the Doctors Preface & therefore knew what the Doctor had published. And the Doctor in his Letter to Mr Leibnitz dated Decem 1 1696 & published in the third Volume of the Doctors Works [See pag. 654 lin. 11, 12, 13, 14, 15] gave notice of this Paragraph to Mr Leibnitz himself. And yet neither the Editors nor Mr Leibnitz himself thought fit to contradict the Doctor in those days. But on the contrary many Letters passed afterwards between Mr Leibnitz & the Doctor in a friendly manner, Mr Leibnitz at that time not being offended at what the Doctor had published. And Mr Leibnitz also was homo vetus & rerum anteactarum maxime peritus & before this in his Letter to Mr Newton dated 717 Martij 1693 voluntarily gave the preference to Mr Newton, as you may see in the account of the Commercium Epistolicum published in the Philosophical Transactions. {Num} 542 pag. 198. Mr Bernoulli is an able Mathematician, but what is this to the purpose: ⑥ If he shall tell us that the sentence [Data æquatione fluentes quotcunque quantitates involvente, fluxiones invenire & vice versa] said by Mr Newton in his Letter of 24. Octob 1676 to be the foundation of his Method is not the foundation of the method of fluxions: ⑤ if he shall say that Mr Newton in the Introduction to his Book of Quadratures did not describe the method of fluxions because he did not there use prickt letters: his candor will deserve to be questioned. Mr Leibnitz in the Acta Eruditorum of Iune 1686 allowed that letters might be used in the Differential Method instead of the Differential characters & <506r> {illeg} The same liberty in the method of fluxions W{ill} he be less candid then Mr Leibnitz himself.



③ But if he shall contradict his brother Mr Iames Bernoulli & say that Mr Leibnitz received no light into the Differential method from Dr Barrow; ② if he shall say with his Nephew that when Mr Newton wrote his Book of Quadratures he understood not second fluxions; ① if he shall say that the Tentamen de motuum cœlestium causis written by Mr Leibnits in the year 1689 is free from errors relating to second differences; 4 if he shall {illeg} the M. de L Hosp say that he meets with nothing of the Method of fluxions in the Principia Philosophiæ Mathematica; ⑦ if he shall say that the tradition in England that Mr Newton invented the method of fluxions is not so old as the tradition in Germany that Mr Leibnitz invented the Differential Method because Mr Leibnitz knew litle or nothing of the higher Geometry before the year 1673 & Mr Newton invented the method of series in the year 1665. ⑧ if he shall say that the solving of his Problem by the English Mathematicians is a proper way to prove which was the oldest Tradition or whether Mr Leibnitz was a better Mathematician then Mr Newton 50 years ago: or that he that sends a challenge by Mr Leibnitz to the mathematicians in England, is not at least Mr Leibnitz his second: his candor will very much deserve to be questioned his candor will very much deserve to be questioned notwithstanding his skill in Mathematicks. Mr Leibnitz in the Acta Eruditorum of Iune 1686 allowed that letters might be used in the Differential Method instead of the Differential characters & will not Mr Bernoulli allow the same liberty in the method of fluxions? Will he be less candid then Mr Leibnitz himself?

His words are Civil, but the sense is that I should give my opinion against Dr Keill & thereby retract what I had written in the Introduction to the Book of Quadratures & in my Letter of 24 Octob 1676 & what Dr Wallis had written in the Preface to the two first Volumes of his works, And thence it would have followed that I learnt the method from his Letter of 21 Iune 1677 & thereupon substituted fluxions for differences as Faber substituted motions for the method of Cavellerius.

Apographum Schediasmatis a Newtono olim scripti sui tempus scribendi forte appositum fuit, vizt 13 Novem 1665.

Probleme

An equation being given —

Its well known that I have constantly endeavoured to avoid these disputes & the R. S. meddled not with them till he pressed them by two letters to condemn Dr Keill. And yet because they would not take his word against the Doctor but appointed a Committee to inquuire into the matter & the their Committee upon searching old Letters & Papers would not condemn him he calls them my forlorn hope. The Præface of the Editor præfixed to the second Edition of my Book of Principles at Cambridge I did not see till the Book came abroad, but what he saith there in relation to Mr Leibnitz is in answer his accusing me of introducing occult qualities & miracles & therefor Mr Leibnitz is still the aggressor.

<507r>

London Iune 4, 1720.

Sir Isaac Newton

Sir

The Impression of my Collection of Pieces of Mr. Leibniz &c, is at last finish'd. I have received by the post the Preface enclos'd: which I desire you would take the trouble to read. Before I sent it into Holland I communicated to Mr. Chamberlayne that part of it which relates to what pass'd in the Royal Society; and in a Letter that I have by me, he expresses his approbation of it.

Its my design in giving an Account of the dispute concerning the Invention of Fluxions, was only to set right some Matters of fact mistaken or unknown beyond sea; and thereby endeavour to do you justice: so I hope you will find that I have said nothing but what is perfectly agreable to Truth. And I shall think <507v> those hours very well employed that I haue spent in drawing up this Account, if it hath the good fortune not to be dislik'd by you; and you are pleased to look upon it as a proof of the perfect esteem and respect with which I am



As soon as I have receiv'd a compleat Copy of the Collection, I shall haue the honour to send it to you.

Sir



Your most humble and most obedient servant P. Des Maizeaux.

<508r>

Table des Pieces selon l'ordre qu'elles d{oive}ent etre lûes, & qu'elles auroient dû etre imprimeès.

Apostille d'une Lettre de Mr. Leibniz à Mr. l'Abbé Conti: Voila, Monsieur, la Lettre &c . . . p. 3.

Lettre de Mr. Leibniz à Mr. Remond: Vous aurez recu mon Traité Latin &c . . . . . 67.

le . . . Mars 1716 Réponse de Mr. l'Abbé Conti à Mr. Leibniz . . . 12.

le 9 Mars 1716: Lettre de Mr. le Chevalier Newton à Mr. l'Abbé Conti, servant de Reponse à l'Apostille de Mr. Leibniz . . . . . . 16.

14 d'Avril 1716: Lettre de Mr. Leibniz à Mr. l'Abbé Conti: Pour ne vous point faire attendre, &c . . . . 26.

18 d'Avril 1716. * Lettre de Mr. Leibniz à Madame la Comtesse de Kilmansegger . . . . . . . 29

* Apostille d'une Lettre de Mr. Leibniz à Mr. le Comte de Bothmar . . . . . 42.

9 d'Avril 1716. Lettre de Mr. Leibniz à Mr l'Abbé Conti pour repondre à la Lettre de Mr. le Chevalier Newton . . . . . . . . . 48.

<508v>

Apostille à Mr. l'Abbé Conti: Vous aues donné, Monsieur, la solution &c . . . MSS.

9 d'Avril 1716. Lettre de Mr. Leibniz à Mr. Remond: Ie prends la liberté de vous envoyer &c . . . MSS.

Remarques de Mr. le Chevalier Newton sur la Lettre de Mr. Leibniz à Mr l'Abbé Conti: avec une Apostille. &c . . . . 71.

Apostille à cette Lettre . . . . . . .

Lettre de Mr. Leibnis à Mr. Newton . . . . .

Extrait d'une Lettre de Mr. Wallis à Mr. Newton . . . . . . . .

Passage cited ci-dessus & tiré dela Preface de Mr. Wallis . . . . . . .

Fragment del'Extrait des Oeuvres de Mr. Wallis donné {dansles} Acta Eruditorum . . . .

Remarques de Mr. Newton . . . . . . .

Extrait de Traité de Mr. Fatio de Duillier intitulé, Investigatio Geometrica &c . . . .

Remarque de Mr. Newton . . . . .

<511r>

1. Apostille d'une Lettre de M. Leibniz a M. L'Abbé Conti p. 3

3 Réponse de Mr l'Abbé Conti à Mr Leibnitz. le Mars 1716 p 12

2 Lettre de M. Leibniz a Mr Remond p. 67

4 Lettre de Mr le Chevalier Newton le 9 Mars 1716. p. 16.

6 Lettre de Mr Leibnitz a Mr Remund 9 d'Avril 1716.

5 Apostille a Mr l'Abbe Conti: [Hanover ce d'Avril 1716.] Vous avez donné Monsr la solution &c.

8 Lettre de Mr Leibniz a Monsr l'Abbe Conti. Hanover ce 14 Apr 1716. pag 26

7 Lettre de Mr Leibniz a Mr l'Abbe Conti por répondre a la Lettre de M. le Chevallier Newton pag. 48. Hanover ce 9 d'Avril 1716.

9 Lettre de Mr Leibniz a Madam la Comptess de Kilmansegger. 18 Apr 1716. pag. 24

18 d'Avril 1716 Lettre de Mr Leibniz à Madam la Comtesse de Kilmansegger – – – – – – – – – 29

10 Apostill d'une Lettre de Mr Leibnits à Mr le Comte de Bothmar pag 42.

11 Remarks

<511v>

Mr Smiths Affairs —

<512r>

Table des Pieces selon l'ordre qu'elles devoient etre lûes & qu'elles auroient dû etre imprimeès.

Apostille d'une Lettre de Mr Leibniz à Mr l'Abbé Conti: Voila, Monsieur, la Lettre &c – – – – – – p. 3

Lettre de Mr Leibniz à Mr Remond: Vous aves reçû mon Traité Latin &c – – – – – – – – – – – 67

le . . . . Mars. 1716 ② Réponse de Mr l'Abbé Conti a Mr Leibniz – – – – – 12

le 9 Mars 1716 ① Lettre de Mr le Chevallier Newton à Mr l'Abbé Conti, servant de Response a l'Apostille de Mr Leibnis – – – – 16

9 d'Avril 1716 Lettre de Mr Leibniz à Mr l'Abbé Conti pour repondre à la Lettre de Mr le Chevalier Newton & – – – 48

9 d'Avril. 1716 Apostille de meme Lettre à Mr l'Abbe Conti: Vous avez donne, Monsieur, la solution &c – – – – – – – MS

9 d'Avril 1716. Lettre de Mr Leibnis à Mr Remond: Ie prens la liberté de vous envoyer &c MS

14 d'Avril. 1716 Lettre de Mr Leibnis à Mr l'Abbé Conti: Pour ne vous point fair attendre &c – – – – – – 26

18 d'Avril 1716 Lettre de Mr Leibniz à Madam la Comtesse de Kilmansegger – – – – – – – – – 29

Apostille d'une Lettre de Mr Leibnis a Mr le Comte de Bothmar – – – – – – – – – – 42

29 de May 1716. Remarques de Mr le Chevaliere Newton sur la Lettre de Mr Leibniz à Mr l'Abbé Conti. – – – – 71.

<514r>

Table des Pieces selon l'ordre qu'elles devoient etre lûes & qu'elles auroient dû etre imprimeès.

1 Apostille d'une Lettre de Mr Leibniz à Mr l'Abbé Conti: Voila, Monsieur, la Lettre &c – – – – – – – – – – p. 3

2 Lettre de Mr Leibnis à Mr Remond: Vous aves reçû mon Traité Latin &c – – – – – – 67

le . . . . Mars. 1716 4 Réponse de Mr L'Abbé Conti à Mr Leibnis – – – – – – 12

le 26 de Febr. 1716 st. v. 3 Lettre de Mr le Chevalier Newton à Mr l'Abbé Conti, servant de Reponse à l'Apostille de Mr Leibnis – – – – – – 16

9 d'Avril 1716 st. n 5 Lettre de Mr Leibnis a Mr l'Abbé Conti pour repondre à la Lettre de Mr le Chevalier Newton – – – – – 48

Apostille de meme Lettre a Mr l'Abbé Conti: Vous aves donne Monsieur, la solution &c – – – – – – – MS

9 d'Avril 1716 6 Lettre de Mr Leibniz à Mr Remond: Ie prens la liberté de vous envoyer &c – – – – – – – – – – MS

14 d'Avril 1716 7 Lettre de Mr Leibnis a Mr l'Abbe Conti: Pour ne vous point fair attendre &c – – – – – – – – – 26.

18 d'Avril 1716 8 Lettre de Mr Leibnis à Madam la Comtesse de Kilmansegger. 29

9 Apostille d'une Lettre de Mr Leibnis à Mr le Comte de Bothmar – – – – – – – – – – 42

le 29 de May 1716 10 Remarques de Mr le Chevaliere Newton sur la Lettre de Mr Leibnis à Mr l'Abbé Conti. – – – – – 71

<515r>

Table des Pieces selon l'ordre qu'elles devoient etre lûes & qu elles auroient dû etre imprimees.

① Apostille d'une Lettre de Mr Leibniz à Mr l'Abbé Conti: Voila, Monsieur, la Lettre &c                      p. 3

*② Lettre de Mr Leibniz à Mr Remond: Vous aures reçû mon Traité Latin &c                                  67

le 9 Mars 1716 n.s. ④ Lettre de Mr le Chevalier Newton à Mr l'Abbé Conti, servant de Reponse à l'Apostille de Mr Leibnis                 16

le . . . . Mars 1716 ③ Reponse de Mr l'Abbé Conti à Mr Leibnis.                    12

9 d'Avril 1716 ⑧ Lettre de Mr Leibnis à Mr l'Abbe Conti pour repondre à la Lettre de Mr le Chevallier Newton, &                48

⑨ Apostille de meme Lettre à Mr l'Abbé Conti: Vous aves donne Monsieur; la solution &c                                MS

9 d'Avril 1716 10 Lettre de Mr Leibnis à Mr Remond: Ie prens la liberté de vous envoyer &c                                  MS

14 d'Avril 1716 ⑤ Lettre de Mr Leibnis a Mr l'Abbé Conti: Pour ne vous point fair attendre &c.                              26.

18 d'Avril 1716. ⑥ Lettre de Mr Leibnis a Madam la Comtesse de Kilmansegger 29

⑦ Apostille d'une Lettre de Mr Leibnis à Mr le Comte de Bothmar                                        42

29 de May 1716 11 Remarques de Mr le Chevaliere Newton sur la Lettre de Mr Leibnis à Mr l'Abbé Conti.              71

<516r>

Table des Pieces selon l'ordre qu'elles devoient etre lûes, & qu'elles auroient dû etre imprimeès.

1. Apostille d'une Lettre de Mr Leibniz à Mr l'Abbé Conti: Voila, Monsieur, la Lettre &c – – – – p. 3

2. Lettre de Mr Leibniz à Mr Remond: Vous aves reçû mon Traité Latin &c – – – – – – – – – 67.

le ... de Mars. 1716 3 Réponse de Mr l'Abbé Conti à Mr Leibniz – – – – – 12

le 9 Mars. 1716. 4 Lettre de Mr le Chevallier Newton à Mr l'Abbé Conti, servant de Reponse à l'Apostille de Mr Leibnis – – 16

                               MS

9 d'Avril 1716 5 Lettre de Mr Leibniz à Mr Remond: Ie prends la liberté de vous envoyer &c – – – – – – – – – MS

14 d'Avril 1716. 8 Lettre de Mr Leibnitz à Mr l'Abbé Conti: Pour ne vous point fair attendre, &c – – – – – – – – 26.

9 d'Avril 1716. 6 Lettre de Mr Leibniz à Mr l'Abbé Conti pour repondre a la Lettre de Mr le Chevalier Newton – 48

7 Apostille de meme Letter à Mr l'Abbe Conti: Vous aves donné Monsieur la solution &c – – – – – – – MS.

18 d'Avril 1716. 10 Lettre de Mr Leibniz à Madame la Comtesse de Kilmansegger – – – – – – – – – 29

11 Apostille d'une Lettre de Mr Leibniz a Mr le Comte de Bothmor – – – – – – – – – – 42

9 Remarques de Mr le Chevallier Newton sur la Lettre de Mr Leibniz à Mr l'Abbé Conti – – 71

<516v>

pag. 74. l 11 pro [commencement de cette dispute] scribe [imprimerie]

p. 84. l. 24 pro [perfectiones] lege

pag 90 or 91. – & sent it to Mr Collins as mine & told him that by those & other papers which he had received from me before, it appeared that the method there described was invented by me & generally applyed some years before Mercators Logarithmotechnia came abroad; as Mr Collins related in his Letter to Mr Strode 26 Iuly 1672. And some years before his Lectures – – –

At the end add — He has not produced the least proof that he knew the method before the year 1677, but on the contrary in his Letter of 27 Aug. 1676 he questioned the generality of my methods, denyed that inverse Problems of Tangents could be reduced to equations & placed the perfection of Analysis in Analytical Tables of Tangents & the Combinatory Art, saying of the first; Nihil est quod norim in tota Analysi momenti majoris: & of the second Ea vero nihil differt ab Analysi illa suprema, ad cujus intima Cartesius non pervenit. Est enim ad eam constituendam opus Alphabeto cogitationum humanarum. And in a Letter from Amsterdam to Mr Oldenburgh 28 Novem. 1676. he proposed to perfect Slusius's Method of Tangents by such a Table.

<517r>

P.S.[1]

Tous ceux qui sont pour le vuide, se laissent plus mener par l'imagination que par la raison. Quand j'etois jeun garçon je donnay aussi dans le vuide et dans les Atomes, mais le raison me ramena{;} l'imagination etoit riante, on borne là ses recherches, on fixe la meditation comme avec un clou, on croit avoir trouve les premiers Elemens, un non plus ultra. Nous voidrions que la nature n'allât pas plus loin qu'elle fut finie comme notre esprit: mais ce n'est point connoître la grandeur et la Majesté de l'Auteur des choses. Le moindre corpuscle est actualmant subdivisé à l'infini et contient un monde de novelles creatures, dont l'Universe manqueroit si ce corpuscle etait une atome, c'est a dire un corps tout d'une piece sans subdivision. Tout de même vouloir du vuide dans la nature c'est attribuer à Dieu une production tres imparfaite; c'est violer le grand principe de la necessité d'une raison suffisante, que bien des gens ont eu dans la bouche, mais dont ils n'ont point connu la force; comme j'ay montré dernierement, en faisant voir par ce principe, que l'espace n'est qu'une ordre des choses comme le temps, et nullement un Estre absolu. Sans parler de plusiers autres raisons contre le vuide et les atomes; en voicy celles que je prends de la perfection que Dieu, & de la raison suffisante. Ie pose, que toute perfection que Dieu a pû mettre dans les choses sans deroger aux autres perfections qui y sont, y a ete mise. Or figurons nous un espace entriement vuide, Dieu y pouvoit mettre quelque matiere sans deroger en rien a tout les autres choses. Donc il y a mise. Donc il n'y a point d'espace entirement vuide. Donc tout est plein. Le meme raisonnement prove qu'il n'y a point de corpuscule qui ne soit subdivisé. Voicy encore l'autre raisonnement pris de la necessity d'une raison suffisante. Il n'est point possible qu'il y ait une principe de determiner la proportion de la matiere ou du rempli au vuide, du void au plein. On dira peut etre que l'une doit étre egal a l'autre, mais comme la matiere est plus parfaite que le vuide, la raison veut qu'on observe la proportion Geometrique, et qu'il y ait d'autant plus de plein qu'il merite d'etre preferé. Mais ainsi il n'y aura point de vuide du tout, Car la perfection de la matiere est à celle du vuide, comme quelque chose à rien. Il en est de même des Atomes, quelle raison peut on assigner de borner la nature dans le progrés de la subdivision? fictions purement arbitraires & indignes de la vraye Philosophie. Les raisons qu'on allegue pour le vuide ne sont que des sophismes.



Received of the Princess May 7th 1716, & copied May 8.

<520r>

P.S.[2]

M. l'Abbè Conti

Voila, Monsieur, la Lettre dont vous pourrez faire usage si vous le iugez apropos. Ie viens maintenant à ce qui nous regarde, Ie suis ravi que vous estes en Angleterre, il y a dequoy profiter, et il faut avouer qu'il y a là de trés habiles gens, mais ils voudroient passer pour étre presque seuls inventeurs: et c'est en quoy apparemment ils ne reussiront pas. il ne paroist point que M. Newton ait eu avant moy la Caracteristique et l'Algorithme infinitesimal, suivant ce que M. Bernoulli a très bien iugé: quoyqu'il luy auroit eté fort aisé d'y parvenir s'il s'en fut avisé. comme il auroit eté fort aisé à Apollonius de parvenir à l'Analyse de Descartes sur les Courbes, s'il s'en étoit avisé. Ceux qui ont ecrit contre moy n'ayant pas fait difficulté d'attaquer ma candeur par des interpretations forcées et mal fondées, ils n'auront point le plaisir de me voir répondre a de petites raisons de gens qui en usent si mal, et qui d'ailleurs s'ecartent du fait. Il s'agit du Calcul des differences, et ils se jettent sur les Series, où M. Newton m'a precedé sans difficulté; mais Ie trouvay enfin une methode generale pour les Series, et aprés cela Ie n'avoit plus besoin de recourir à ses extractions. Ils auroient mieux fait de donner les lettres entieres comme M. Wallis a fait avec mon consentement, et il n'a pas eu la moindre dispute avec moy comme ces gens là voudroient persuader au Public. Mes adversaires n'ont publié du Commercium Epistolicum de M. Collins que ce qu'ils ont crû capable de recevoir leur mauvaises interpretations. Ie fis connoissance avec M. Collins <520v> dans mon second voyage d'Angleterre, car au premier (qui dura trés peu parcque I'etois venu avec un Ministre public) Ie n'avois pas encore la moindre connoissance de la Geometrie avancée, et n'avois rien vû ny entendu du commerce de M. Collins avec Mess. Gregory et Newton; comme mes lettres echangées avec M. Oldenbourg en ce temps là, et quelque temps apres, feront assez voir. Ce n'est qu'en France que I'y suis entré, et M. Hugens m'en donna l'entrée Mais à mon second voyage M. Collins me fit voir une partie de son commerce, et I'y remarquay que M. Newton avoua aussi son ignorance sur plusieurs choses, et dit entre autres qu'il n'avoit rien trouvé sur la dimension des Curvilignés celebres que la dimension de la Cissoide. Mais on a supprimé tout cela, Ie suis faché qu'un aussi habile homme que M. Newton s'est attiré la censure de personnes intelligentes, en deferant trop aux suggestions de quelque flatteurs, qui l'ont voulu brouiller avec moy.

Sa Philosophie me paroist un peu etrange, et je ne crois pas qu'elle puisse s'etablir. si tout corps est grave, il faut necessairement (quoyque disent Ses deffenseurs, et quelque emportement qu'ils tèmoignent) que la gravité soit une qualité occulte scholaftique, ou l'effect d'un miracle, I'ay fait voir autrefois à M. Bayle que tout ce qui n'est pas explicable par la nature des creatures est miraculeux. Il ne suffit pas de dire, Dieu a fait une telle loy de nature, donc la chose est naturelle. il faut que la loy soit executable par les natures des creatures. si Dieu donnoit cette loy, par exemple à un corps libre, de tourner à l'entour d'un certain centre, il faudroit ou qu'il y <521r> joignit d'autres corps qui par leur impulsion l'obligeassent de rester toujours dans son orbite circulaire, ou qu'il mit un ange à ses trousses; ou enfin il faudroit qu'il y concourut extraordinairement car naturellement il s'écartera par la Tangente, Dieu agit continuellement sur les Creatures par la conservation de leur Natures, et cette conservation est une production continuelle de ce qui est perfection en elles, il est intelligentia supramundana parce qu'il n'est pas l'ame du Monde, et n'a pas besoin de Sensorium.

Ie ne trouve pas le vuide demonstre par les raisons de M. Newton ou de ses sectateurs, non plus que la pretendue gravité universelle, ou que les Atomes. on ne peut donner dans le vuide et dans les Atomes, que par des vues trop bornées. M. Clare dispute contre le sentiment des Cartesiens qui croyent que Dieu ne sauroit détruire une partie de la matiere pour faire un vuide, mais Ie m'etonne qu'il ne voit point qui si l'Espace est une substance differente de Dieu, la même difficulté s'y trouve. or de dire que Dieu eft l'Espace, c'est luy donner des parties. l'Espace est l'ordre des coexistences, et le temps est l'ordre des existences successives. ce sont des chose veritables mais ideales, comme les nombres.

la Matiere même n'est pas une substance, mais seulement substantiatum un Phenomene bien fondé et qui ne trompe point quand on y proceede en raisonnant suivant les loix ideales de l'Arithmetique et de la Geometrie & de la Dynamique &c: Tout ce que Iavance en cela paroist démontré <521v> Apropos de la Dynamique ou de la doctrine des forces, Ie m'étonne que M. Newton et ses sectateurs croyent que Dieu a si mal fait sa Machine, que s'il n'y mettoit la main extraordinairement, la Montre cesseroit bien tôt d'aller. c'est avoir des idées bien étroites de la sagesses de la puissance de Dieu. I'appelle extraordinaire toute operation de Dieu, qui demande autre chose que la conservation des natures des creatures. Ainsi quoyque Ie croye la Metaphysique de ces Messieurs là, a narrow one et leur Mathematique assez arrivable; Ie ne laisse pas d'estimer extremement les meditations Physico-Mathematique de M. Newton; et vous obligeriez infiniment le public, Monsieur, si vous portiez cet habile homme à nous donner iusqu'a ses conjectures en Physique. I'approuve fort sa methode de tirer des Phenomenes, ce qu'on en peut tirer sans rien supposer, quand même ce ne seroit quelque fois que tirer des consequences conjecturales. Cependant quand les data ne suffisent, point, il est permis (comme on fait quelque fois en dèchifrant) d'imaginer des hypotheses; & si elles sont heureuses, on s'y tient provisionnellement, en attendant que des nouvelles experiences nous apportent nova data, et ce que Bacon appelle experimenta crucis, pour choisir entre les hypotheses. comme I'apprends que certains Anglois ont mal representé ma Philosiphie dans leur Transactions, Ie ne doute point qu'avec ce que Ie vous mande icy, Ie ne puisse estre juftifié. Ie suis fort pour la Phylosophie experimentale. mais M. Newton s'en ecarte fort quand il pretend que toute la matiere est pesante (ou que chaque partie de la matiere en attire chaque autre partie) ce que les experiences ne prouvent nullement, comme M. Hugens a deja fort bien jugé. la matiere gravifique ne sauroit avoir elle même cette pesanteur dont elle est la cause. et M. Newton n'apporte aucune experience ni raison suffisante pour le vuide et les Atomes ou pour l'attraction mutuelle generale. Et parce qu'on ne sait pas encore parfaitemont <522r> et en detail comment se produit la gravité ou la force elastique, ou la magnetique &c on n'a pas raison pour cela d'en faire des qualites occultes scholastiques ou des miracles; mais on a encore moins raison de donner des bornes à lá sagesse et à la puissance de Dieu, et de luy attribuer un Sensorium et choses semblables. Au reste Ie m'etonne que les Sectateurs de M. Newton ne donnent rien qui marque que leur Maistre leur a communiqué une bonne methode, I'ay eté plus heureux en disciples.

<523r>

Lettre de M. Leibniz à M. Remond.[3]

Monsieur

Vous aurez resû mon Traité Latin de l'Origine des François par M. Hullin; et par la Poste mes Remarques sur la refutateur du Pere Malbranch; et en fin ma Depeche très ample a M. l'Abbé Conti, que je vous ai envoyée par le dernier Courrier. Ie trouve quelque chose que je vous supplie, Monsieur, d'y ajouter en la lui envoyant.

I'ai oublié de nommer deux habiles homms que je crois être a Londres, qui merit{ent} d'être connus & sont tous deux de mes amis; M. Sloane qui a un excellent Cabinet, & a exercé long tems la function de Secretaire de la Societé Royale; et M. Woodward, qui a fait de tres-belles recherches sur les changemens du Globe de la Terre. Peut-être que M. l'Abbê Conti a deja fait connoissance avec eux.

Madam la Princesse de Galles me marque dans une Lettre que j'ay eu l'honneur de recevoir, qu'Elle seroit bien aise que ma Theodiceé fut traduite en Anglois. Mais ceux à qui elle en a parlé y font naitre de la difficulté & ont renvoy la chose à des gens partiaux pour Mr Newton. Il y en a, sans doute, assez d'autres capables d'une tell Traduction: Ie ne sai si M. de la Roche, François, qui a écrit autrefois des Memoires de Literature en Anglois, écrit assez bien l'Anglois (au jugement des Connoisseurs) pour recourir a lui. En ce cas je croi qu'il seroit homme a s'en charger: sinon je m'imagine qu'on en trouveroit assez d'autres. L'habile Mr. Wotton qui a écrit autrefois en Anglois elegamment et sçavamment et avec moderations sur les Anciens et Moderns, & sur les progres des Sciences, en seroit bien capable, si on l'y pouvoit porter. Car je sai qu'il ne méprise pas mes sentimens. Mais en fin si quelques-uns savoient qu'ils feroient plaisir à son Altesse Royale, en faisant cette Traduction, je croi qu'ils seroient ravis de l'entreprendre.

Si M. l'Abbe Conti n'est pas encore connu de Madame la Princesse de Galles, et s'il desire cet honneur-là; il suffiroit qu'il s'en rapportât a moi. Il pourroit être introduit auprès d'elle, ou par l'entremise de M. Querini son compatriote, ou par celle de Madam la Comtesse de Lippe-Bikebourge qui est une Comtesse de l'Empire, fort aimée de Madame la Princesse: car elle a bien du merite, & elle a aussi de la bonte pour moi.

On pourra ajouter quelque chose a ma grand Apostille a M. l'Abbé Conti. Apres ces mots feront assez voir, qui seront vers la fin de la premiere page de cette Apostille, ou gueres loin du commencement, de la second, on peut ajouter, ce n'est qu'en France que j'y suis entré, et M. Huygens m'en a donné l'entrée. Et a la fin du primier paragraphe, dans la même page après ces mots: brouiller avec moi, on peut ajouter: la Societé Royale ne m'a point eté oui, et si l'on m'avoit fait savoir les noms de ceux qu'on avoit nommez comme Commissaries, j'auvois pû m'expliquer, si je recusois quelques uns, et si j'en desirois d'autres, C'est pourquoi les formalit es essentielles n'ayant été observées, la Societé a declaré qu'elle ne prétend point avoir jugé definitivement entre M. Newton et moi.

Ie sui avec zele

Monsieur

Votre &c.

<525r>

Response de M. l'Abbé CONTI a M. Leibniz.[4]

Monsieur

I ai differé jusqu'a cette heure de respondre a votre Lettre, parce que j'ai voulu accompagner ma re Response de celle que M. Newton, vient de fair a l'Apostille que vous y avez ajouteé. Ie entrerai dans aucun detail à l'égard de la dispute que vous avez avec M. Keill, ou plutôt avec M. Newton. Ie ne puis dire qu'historiquement ce que j'ai vû, & ce que j'ai lû, & ce qu'il me manque encore de voir & de lire pour en juger comme il faut.

I'ai lû avec beaucoup d'attention et sans la moindre prevention le Commercium Epistolicum, et le petic Livre qui en conteint l' Extraita[5]. I'ai vû a la Society Royale les papiers Originaux de Lettres de Commercium: une petite Lettre écrite de votre main a M. Newtonb[6]; l'ancient Manuscrit envoya au Docteur Barrow, & que M. Iones a publié depui peuc[7].

De tout cela j'en infere, que si on ôte à la dispute toutes les digressions étrangeres, il ne s'agit que de chercher si M. Newton avoit le Calcul des fluxions ou infinitesimal, avant vous; ou si vous l'avez eu avant lui. Vous l'avez publié le primier, il est vrai; mais vous avez avoué aussi que Mr Newton en avoit laissé entrevoir beaucoup dans les lettres qu'il a écrites à Mr. Oldenbourg & aux autres. On prouve cela fort au long dans le Commercium, & dans son Extrait. Quelles sont vos Réponses? Voila ce qui manque encore au Public, pour juger exactement de l'affair.

Vos Amis attendent votre réponse avec beaucoup d'impatience, & il leur semble que vous ne sauriez vous dispenser de répondre, si non a M. Keill, du moins a M. Newton lui- même, qui vous fait un deffi en termes exprès comme vous verrez dans sa Lettre.

Ie voudrois vous voir en bonne intelligence. Le Public ne profit guere des disputes, et il perd sans ressource pour bien des siecles, toutes les lumieres que ces memes Disputes lui dérobent.

Sa Majesté a voulu que je l'informasse de tout ce qui s'est passé entre M. Newton et vous. Ie l'ai fait de mon mieux, et je voudrois que se fut avec succèss pour l'un et pour l'autre.

Votre Probleme a été resolu fort aisément en peu de tems. Plusieurs Geometres àa Londres & a Oxford en ont donné la solution. Elle est générale; car elle s'etend de toutes sortes de Courbes soit Geometriques, soit Mechaniques. Le Probleme est un peu equivoquement proposé; mais je croi que M. de Moivre ne se trompe pas, en disant: qu'il faudroit fixer l'Idée d'une suit de Courbes, par Exemple supposer qu'elles ayent la même soûtangeante pour la même Abcisse; ce qui conviendra non seulement aux Sections Coniques, mais à une infinité d'autres tant Geometriques que Mechaniques; ou pourroit encore faire d'autres suppositions pour fixer cette Idée.

Ie vous parleraj une autre fois de la Philosophie de Mr. Newton. Il faut convenir auparavant de la Methode de Philolbpher, & distinguer avec beaucoup de soin la Philosophie de M. Newton, des consequences que plusieurs en tirent fort mal a propos. On attribuë à ce grand homme bien des choses qu'il n'admet pas; comme il l'a fait voir a ces Meissieurs François qui vinrent a Londres, à l'occasion de la grande Eclipse.

Lorsque Mr. le Baron Discau reviendra de Pologne, je me donneray l'honneur de vous entretenir plus souvent, de vous serez, peut-être, bien aise de savoir ce qui se passe dans une ville, ou les Savans sont en si grand numbre, & ou les Sciences & les Arts fleurissent plus que jamais.

Ie vous remercie tres humblement de la Lettre sur le systeme de M. Nigrisoli: La question n'est pas des plus importantes, ni le Philosophe des plus savans; mais quelquefois il faut ceder au tems, et aux instances de ces amis. Ie suis avec tout le respect possible, Monsieur, vôtre &c

A Londres le     de Mars 1716.

<527r>

P. S.[8]

Ie suis bien obligé a V. E, de ce qu'Elle paroist desapprourer les chicanes que certaines les chicanes que certaines personnes m'ont Suscitè. Mais — puis-je m'empechor de respondre, quand on n'attaque pas seulement ma science, mais aussi ma bonne foy et ma reputation? Ie fis connoistre en 1676, par une lettre escrite au Secretaire de la Societé Royale d'Angleterre, qui j'avois trourè un nouveau calcul Mathematique. Ie ne Le publiai qu'en 1684. et il fit grand truit parmi les connoísseurs et fut bien tost introduit par tout et applique utilement à cent questions difficiles. Mr. Newton publia un livre en 1686. où il marqua, qu'il avoit donnè il y a longtems quelque chose de cette nature par enigme, mais qu'il n'expliqua qu'alors, avouant que j'avois donné le mien de mon chef. Quoyque l'explication de l'enigme ne dist pas assez, neantmoins persuadé alors non seulement du-scavoir, mais aussi de la candeur de Mr. Newton, j'eus l'honnestetè de dire et de faire dire à mes amis, que je croyois que Mr. Newton avoit eu de son chef une invention approchante de la mienne. Les choses en demeurerent là, mais après 27. ans de ma possession, quelque personnes envieuses de la reputation d'autruy, voyant <527v> le grand usage de l'invention dont le monde estoit redevable a moi, puisqu'en esset je l'avois publiè, quoy qu'après 8. ans d'attente, pendant que Mr. Newton avoit gardè in petto ce qu'il pouvoit avoir eu; ils chercherent un pretexte pour me faire querelle, et ils le trouverent dans certaines paroles d'un Iournal Latin de Leipzig, qu'ils supposerent avoir estè mises là avec mon consentement a qu'ils expliquerent comme si j'accusois Mr. Newton d'avoir forgé son calcul sur le mien. Soit que Mr. Newton ait esté abusè par des Suggestions malignes, soit qu'il ait esté bien aise d'avoir ce pretexte de s'attribüer l'invention en-m'excluant, ses adherents publierent un livre contre moy à Londres 1712. plein defausses interpretations de vieilles lettres, par lesquelles ils m'accusoient comme par forme de retorsion, que c'estoit plustost moy, qui avois pris mon invention de Mr. Newton, et on eut grand soin d'envoyer ce libelle en France, en Italie et ailleurs. I'estois alors à Vienne, j'appris la publication du livre, mais assuré qu'il devoit contenir des faussetez malignes, je ne daignay point de le faire venir par la poste, mais j'escrivis à Mr. Bernoulli, l'homme de l'Europe, qui a peutestre le mieux reussi dans la connoissance de dans l'usage de ce calcul, et qui estoit tout à fait-neutre de men mander son sentiment. Monsieur <528r> Bernoulli m'escrivit une lettre datée de Basle le 7 Iuin 1713. où il disoit, qu'il paroissoit vray semblable, que Mr. Newton avoit fabriqué son calcul apres avoir veu le mien, parcequ'il avoit eu plusieurs fois occasion dans ses ouvrages d'employer ce calcul, sans qu'il en paroisse aucune trace; de mesme qu'il avoit fait des fautes, qui paroissent incompatibles avec une veritable intelligence de ce calcul. Un de mes amis publia cette lettre avec des reflexions. Et comme — j'avois assez d'autres occupations, je ne voulus point entrer davantage là dedans, d'autant que Mr. Newton n'avoit point parlé luymesme. Ain si je crus qu'il suffisoit d'avoir opposè aux criailleries deses adherents le jugement d'une personne de le Science et de l'impartialité de Mr. Bernoulli.

Mais enfin on a trouvé le moyen de me faire parler, en donnant connoissance de l'affaire au Roy, et en m'envoyant en mesme temps un cartel de Mr. Newton. I'y ay respondu par une lettre, qui n'est pas trop longue, mais — apparemment cela ira plus loin et il faudra entrer dans un grand detail. Car s'il efl permis à Mr. Newton et a ses adherents de continuer de noircir ma reputation, je Suis obligé indispensablement de me defendre et d'user de repressailles, quoyque je Souhaiterois d'employer mon temps plus utilement. Il pretend dans Sa lettre, que je suis <528v> l'Aggresseur, que je l'ay accusé d'avoir usé de mauvaise foy, et que c'est a moy de prouver cette accusation. Ie souhaite qu'on examine cette question preallable, qui de nous deux est l'aggresseur. Car il est fort aisè de la vuider. Il ne se fonde que dans les paroles du journal de Leipzig du Ianvier de l'an 1705. que voicy: Calculi differentialis ejusque reciproci summatorii elementa ab iventore D. Godefrido Guilielme Leibnitio in his Actis sunt tradita, variique usus tum ab ipso, tum a D. D. Fratribus Bernoulliis, tum et D. Marchione Hospitalio — sunt ostensi. Pro differentiis igitur Leibnitianis D. Newtonus adbibet, semperque adhibuit Fluxiones, quæ sunt quam proxime ut Fluentium augmenta æqualibus temporis particulis quam minimis genita; iisque tum in suis Principiis Naturæ Mathematicis tum in aliis postea editis eleganter est usus; quem admodum et Honoratus Fabrius in Sua Synopsi Geometrica, — motuum progressus Cavallerianæ methodo substituit.

Il n'y a pas un mot la dedans, qui ne soit vray à la rigueur; et il n'y a pas un mot qui dise que Mr. Newton a fabrique son calcul sur le mien: mais on l'en a voulu tirer par une glosse marginale dans le livre fait contre moy p. 108. Car lorsque le Iournal de Leipzig dit: pro differentiis Leibnitianis D. Newtonus adhibet <529r> Semperque adhibuit fluxiones, l'auteur de la glosse l'explique ainsi: Sensus verborum est, quod Newtonus fluxiones differentiis Leibnitianis Substituit, mais ce substituit est une interpretation maligne du glossateur, et ne peut point s'accorder avec semperque adhibuit, qui paroist avoir estè mis là tout exprès, pour marquer que desja avant — la publication de mon calcul Mr. Newton s'estoit servi des fluxions, au lieu qu'on dit Substituit, en parlant du Pere Fabry, qui estoit venu après Cavalieri et en avoit changé les expressions; en quoy on a marqué la difference, en disant que Mr. Newton a tousjours employé sa methode, au lieu que le Pere Fabry n'-a forgè la Sienne qu'à l'imitation d'un autre. Ainsi on ne peut rien tirer de derogeant pour Mr. Newton de ces paroles qu en les empoisonnant. Et si on les avoit trouvé obscures on auroit peu demander une explication, et les Iournalistes auroient pris plaisir sans doute de redire ce qu'on avoit dit plusieurs fois ailleurs, qu'on croyoit que Mr. Newton yestoit parvenu deson chef. Mais au lieu de se servir d'une telle-voye, on a voulu chercher querelle: desorte que Mr. Newton se trouve l'aggresseur, et par consequent c'est luy, qui a l'incumbence de prouver son accusation.

<531r>

Monsieur[9]

C'est sans doute pour l'amour de la verité que vous vous etes chargé d'une espece de cartel de la part de M. N. Ie n'ay point voulu entrer en lice avec des enfans perdus qu'il avoit detachez contre moy; soit qu'on entende celuy qui a fait l'accusat eur sur le fondement du Commerclum Epistolicum, soit qu'on regarde la Preface pleine d'aigreur qu'un autre a mise devant la nouvelle Edition de ses Principes. Mais puiqu'il veut bien paroitre luy mêsme, je seray bien aise de luy donner satisfaction.

Ie fus surpris au commencement de cette dispute d'apprendre qu'on m'accusait d'etre l'aggresseur. Car je ne me souvenois pas d'avoir parlé de M. N. que d'une maniere fort obligeante. Mais je vis depuis qu'on abusoit pour cela d'un passage des Actes de Leipzig du Ianvier 1705 où il y a ces mots: pro differentijs L . . . tianis, D. N . . . nus adhibet semperque adhibuit Fluxiones. Ou l'auteur des remarques sur le Commercium Epistolicum dit pag 108. Sensus verborum est, quod N . . . nus Fluxiones differentijs L . . . tianis substituit. Mais c'est une interpretation maligne d'un homme qui cherchoit noise. Il semble que l'auteur des paroles insere dans les Acts de Leipzig a voulu y obvier tout expres par ces mots adbibet semperque adhibuit; pour insinuer que ce n'est pas apres la veue de mes differences, mais deja auparavant, qu'il s'est servi de fluxions. Et je defie quique ce soit de donner un autre but raisonable a ces paroles semperque adhibuit. Au lieu qu'on se sert du mot substituit en parlant de ce que le Pere Fabri Cavallieri. D'ou il faut conclure, ou que M. N. s'est laissé tromper par un homme qui a empoisonné ces Paroles des Actes, qu'on fupposoit n'avoir pas eté publiées sans ma connoissance, et s'est imaginé qu'on l'accusoit d'étre plagiaire; ou bien qu'il a été bien aise de trouver un pretexte de s'attribuer ou fair attribuer privativement l'invention du nouveau Calcul (depuis qu'il en remarquoit le succés, et le bruit qu'il faisait dans le monde) contre ses connoissances contraires avouées dans son livre des Principes, p. 253 de la primiere Edition. Si l'on avoit fait connoitre qu'on trouvoit quelque difficulté ou sujet de plainte dans les paroles de Acts de Leipzig, je suis assuré que ces Messieurs, qui ont part a ces Actes, auroient donné un plein contentment; mais il semble qu'on cherchoit un pretexte de rupture

Ie n'ay pas eu connoissance du numerous Committee of Gentlemen of several nations relating to the dispute. Car on ne m'en a donné aucune part. Et je ne scay pas encore presentement les noms de tous ces Commissaires, et particulierement de ceux qui ne sont pas des Isles Britanniques. Ie ne crois pas qu'ils approuvent tout ce qui a eté mis dans l'ouvrage publié contre moy

Il est aise de croire qu' j'ay eté quelque temps à Vienne, avant que d'avoir vû le Commercium Epistolicum deja publié, quoique j'en eusse des nouvelles. Ainsi un ami sachant cela, aussi zelé pour moi que les seconds de M. N. le peuvent étre pour luy, a publié un papier, que M. N. appelle diffamatoire. (defamatori letter.) Mais cette piece n'estant pas plus forte que ce qu'on a publié contre moi, M. N. n'a pas droit de s'en plaindre. Si l'on n'a pas marqué l'auteur, ny le lieu de l'impression du papier; on connoit assez le nom et le lieu de l'auteur de la Lettre y inserée d'un ex <536r> cellent Mathematicien qui j'avois prié de dire son sentiment sur le Commercium, et cela suffit. M. N. (dont les partisans ont marqué qu'il ne leur etoit inconnu) l'appelle un Mathematicien ou pretendu Mathematicien; et apres avoir fait inutilement des efforts pour le gagner, il le meprise contre l'opinion publique qui le met entre ceux du primier rang, et contre l'evidence des choses, verifiées par ses découvertes.

Lors que I'eus enfin le Commercium Epistolicum, je vîs qu'on s'y écartoit entirement du but, et que les Lettres qu'on publioit ne contenoient pas un mot qui pût faire revoquer en doute mon invention du Calcul des differences dont il s'agissoit. Au lieu de cela je remarquay qu'on se jettoit sur les series, ou l'on accorde l'avantage a M. N. & que les remarques contenoient de gloses mal tournees, pour tacher de me decrier par des soubçons sans fondement quelquefois ridicules et quelquefois forgez contre la conscience de quelques uns de ceux qui en ètoient les auteurs ou approbateurs.

Pour repondre donc de point en point a l'ouvrage publié contre moy, il falloit un autre ouvrage, aussi grand. pour le moins que celuy là, il falloit entrer dans un grand detail de quantitaté de minutes passées il y a 30 à 40 ans dont je ne me souvenois gueres; il me falloit chercher mes vieilles Lettres, dont plusieurs se sont perdues, outre que le plus souvent je n'ay point gardé les minutes des miennes; et les autres sont ensevelies dans un grand tas de papiers qui je ne pouvois debrouiller qu'avec du temps et de la patience. Mais je n'en avois gueres le loisir, etante chargé present{e}ment d'occupations d'une toute autre nature.

De plus Ie remarquay que dans la publication du Commercium Epistolicum on a supprimé des endroits qui pouvoient étre au desavantage de M. N. au lieu qu'on n'y a rien omis de ce qu'on croyoit pouvoir tourner contre moy par des gloses forcées. Comme je n'ay pas daigné lire le Commercium Epistolicum avec beaucoup d'attention, je me suis trompé dans l'exemple que I'ay cité, n'ayant pas pris garde, ou ayant oublié qu'il s'y trouvoit. Mais j'en citeray un autre: M. N. avouoit dans un de ses Lettres à M. Collins qu'il ne pouvoit point venir à bout des sections secondes (ou Segments seconds) de spheroides ou corps semblables. Mais on n'a point inseré ce passage ou cette Lettre dans le Commercium Epistolicum. Il auroit été plus sincere par rapport à la dispute, et plus utile au public, de donner le Commerce litteraire de M. Collins tout en tier, là ou il contenoit quelque chose qui meritoit d'estre lù; et particulierement de ne tronque les Lettres. Car il y en a peu parmy mes papiers, ou dont il me reste des minutes.

Ainsi tout consideré, voyant tant de marques de malignité et de chicane; je crûs indigne de moy, d'entrer en discussion avec des gens, qui en usoient si mal. Ie voyois qu'en les refutant on auroit de la peine à eviter des reproches et des expressions fortes, telles que meritoit leur procedé; et je n'avois point envie de donner ce spectacle au public, ayant dessein de mieux emploier mon temps qui me doit etre pretieux, et meprisant assez le jugement de ceux qui sur un tel ouvrage voudroient prononcer contre moy; d'autant que la Societé Royale même ne l'a point voulu fairs <532r> comme je l'ay appris par un extrait de ses Registres.

Ie ne crois point d'avoir dit (comme M. N. me l'impute) que les Anglois n'auroient point le plaisir de me voir repondre a des raisonnemens si minces. Car je ne crois point que tous les Anglois faisant leur cause de celle de M. N. Il y en a de trop habiles & de trop honnestes pour epouser 4 les passions de quelques uns de ses adherens.

Aprés cela il m'accuse d'avoir voulu fair diversion, en combattant sa Philosophie et en voulant l'engager dans des Problemes. Mais quant à la Philosophie, j'ay donné publiquement quelque chose de mes Principes sans attaquer les siens; si ce n'est que par occasion j'en ay, parlé dans des lettres particuliers, depuis qu'on m'en donne sujet. Et pour ce qui est des problemes je n'ay garde d'en proposer a Mr. N. Car je ne voudrois pas 4 m'y engager quand on en proposeroit à Moy, Nous pouvons nous en dispencer à lâge ou nous sommes, mais nous avons des amis, qui y peuvent suppleer à notre defaut,

Ie ne veux point entrer icy dans le detail de ce que Mr. N. dit un peu 4 aigrement contre ma Philosophie ou pour la sienne Ce n'en est point le lieu, I'apelle miracle tous evenement qui ne peut etre arrivé que par la puissance du Createur sa raison n'etant pas dans la nature des Creatures, Et quand on veut neantmoins l'attribuer aux qualités ou forces des Creatures, alors jappelle cette qualité une qualité occulte a la scolastique S'est a dire qu'il est impossible de rendre manifeste, telle que seroit une pesanteur primitive, car les qualités Occultes qui ne Sont point chimeriques, Sont celles dont nous ignorons la cause, mais nous ne l'excluons point Et j'appelle l'ame de L'homme cette substance simple qui s'apperçoit de ce qui se passe dans le Corps humain, et dont les Appetits ou volontés sont suivies par les efforts du Corps. Ie ne prefère pas les Hypotheses aux Argumens tirées de L'induction des Experiences, Mais quelques fois on fait passer pour inductions generales, ce qui ne consiste qu'en observations particulieres, et quelques fois on veut faire passer pour une Hipothese ce qui est demonstratif. L'Idée que Mr. N: donne icy de mon harmonie preetablie n'est pas celle qu'en ont quantité d'habiles gens hors de l'Angleterre, et quelques uns en Angleterre, et je ne crois pas que vous même monsr. en ayez eu une semblable; ou l'ayés maintenant êi moins que d'etre bien changé,

Ie n'ay jamais nie, qu'a mon second voyage en Angleterre jaye vu quelques Lettres de Mr. N. chez Mr. Collins, mais je n'en ay jamais vû, ou Mr. N. ait expliqué Sa methode des Fluxions, et je n'en trouve point dans le Commercium Epistolicum

Ie n'ay pas vû non plus qu'il ait expliqué la Methode des Series que je M'attribue, je Crois qu'il veut parler de celle ou je prends une series Arbitraire. Ie l'ay fait avant mon second retour en Angleterre. Ie ne nie pourtant pas, que Mr. N: n'eut pû l'avoir aussy. Et ce n'est pas même une invention fort difficile.

Mr. N. veut que j'avoue, et que j'accorde ce que jay avoué ou accordé il y a 15 ans, ou autrement on devroit en attendre de luy autant, car il y a maintenant deux fois quinze Ans, que dans la premiere Edition de ses principes p: 253. 254, il m'accorde l'invention du Calcul des differences, independemment de la sienne, et depuis il S'est avisé je ne say comment de faire Soutenir le Contraire,

Il est bon de savoir qu'à mon premier Voyage d'Angleterre en 1673 je n'avois pas la moindre Connoissance des Series infinies, telles que Mr. Mercator venoit de donner, ny dautres Mattieres de la Geometrie, avancèes par les dernieres methodes, je n'etois pas même assez versé dans L'Analyse de des Cartes, Ie ne traitois les Mathematiques que comme un parergon, et je ne savois gueres que la Geometrie practique vulgaire <532v> quoy que j'eusse vû par hazard la Geometrie des indivisibiles de Cavallerius et un Livre de Pere Leotaud, ou il donnoit les quadratures des Lunures et figures Semblables, ce qui m'avoit donné quelque curiosité, Mais je me divertissois plustôt aux proprietés des Nombres, à quoy le petit traité que j'avois publié presque petit garçon de L'art des Combinaisons en 1666, m'avoit donné occasion, Et ayant observé des lors l'usage des differences pour les Sommes, Ie L'appliquay à des Suites de Nombres. On voit bien par mes premieres Lettres echangées avec Mr. Oldenbourg, que je n'etois gueres allé plus avant. Aussi n'avois je point alors la Connoissance de Mr. Collins, quoy qu'on ait faint malicieusement le Contraire.

Ce fut peu à peu que Mr. Hugens me fit entrer en ces Matieres quand je le pratiquois a Paris, et cela joint au traité de Mr. Mercator (que j'avais rapporté avec moy d'Angleterre parceque Mr. Pell m'en avoit parlé) me fit trouver environ vers la fin de l'an 1673, ma Quadrature Arithmetique du Cercle qui fut fort approuvée par Mr. Hugens, et dont je parlay a Mr. Oldenbourg dans une Lettre de L'an 1674. Alors ny Mr. Hugens ny moy, nous ne savions rien des Series de Mr. Newton, ny de Mr. Gregory. Ainsy je crus étre le premier qui eut donné la valeur du Cercle par une Suitte de Nombres rationaux, Et Mr. Hugens le crut aussi. I'en écrivîs sur ceton la à Mr. Oldenbourg qui ne repondit qu'on avoit deja de telles Series en Angleterre. Et l'on voit par ma lettre du 15 Iuillet 1674, et par la reponse de Mr. Oldenbourg du 8 Decembre de la même Année que je n'en devais avoir aucune Connaissance alors, autrement Mr. Oldenbourg n'auroit pas manqué de me le faire Sentir sy luy ou Mr. Collins m'en essent Communiqué quelque chose auparavant, Ce ne fut donc qu'alors, que j'en appris quelque chose, mais je ne savois pas alors les extractions des Racines, des Equations par des Series, ny les regressions ou l'extraction d'une Æquation infinie, I'étois encore un peu neuf en ces Matieres, mais je trouvay pourtant bien tôt ma methode generale par des Series Arbitraires, et j'entray en fin dans mon Calcul des differences, ou les Observations que j'avois faites encore fort jeune sur les differences des Suittes des Nombres, contribuerent à m'ouvrir les yeux, car ce n'est pas par les fluctions des Lignes mais par les differences des Nombres que j'y Suis venu, en Considerant enfin; que ces differences appliquées aux grandeurs qui croissent continuellement, evanouissent en Comparaison des grandeurs differentes, au lieu qu'elles Subsistent dans les Suittes des Nombres, Et je Crois que cette Voye est la plus Analitique Le Calcul Geometrique des differences qui est le même que celuy des Fluctions, n'etant qu'un cas Special devient plus Commode par les evanouissements,

<533r>

Mr. N: allegue par apres les passages, ou j'accorde qu'il y a eu un Calcul approchant de mon Calcul des differences, mais il pourra bien Se souvenir qu'il m'en a accordé autant, et S'il luy est permis de se retracter, pourquoy ne me Sera t'il point permis d'en faire autant? Sur tout apres les verisimilitudes que Mr. Bernoulli a remarquées, I'ay eu une Sy grande Opinion de la candeur de Mr. N. que je lay eru sur sa parolle, mais lè voyant conniver a des accusations dont la fausseté luy est connue il etoit naturel que je commençade de douter.

Ie ne puis avouer ni desavoiier aujourdhuy d'avoir écrit, ou recai des Lettres écrittes il y a plus de 40 Ans, telles qu'on les a publiées. Ie suis obligé de m'en rapporter à ce qui se trouve dans les pappiers qu'on citte, mais je ne remarque rien contre moy, dans celles que Mr. N: allegue du 15 avril et 20 May 1675, et du 24. d'Octobre 1676 Si non dans les faussetez du glossateur, Ie crois que c'étoit purement par distraction, dans un Sejour comme celuy de Paris où je m'occupois à bien d'autres choses encore qu'aux Mathematiques, et par l'eloignement que j'avois des Calculs, dont je craignois la longueur, que jay demandé quelques fois a Mr. Oldenbourg la demonstration ou la methode d'arriver a certaines choses ou j'aurois bien pû arriver moy même Par exemple Ie crois d'avoir deja eu au douze de May 1676, ma methode d'une Series Arbitraire, qui m'auroit pû mener a des Series dont I'y demande la raison. Car ayant consulté mon vieux traité de la Quadrature Arithmetique achevè quelque temps avant ma Sortie de france Ie me sers de la series Arbitraire, cependant les Series marquées dans cette Lettre, Sont une chose dont je consens d'etre redevable à d'autres, et je crois de ne les avoir pas même connues en 1674

N'entendant pas bien, ce que Mr. N: allegue des Actes de Leipzig du May 1700. j'y ay regardé, et je trouve qu'il nen a pas bien apris le sens. Il n'y est point parlé de L'Invention du nouveau calcul des differences mais d' un artifices particulier de maximis et minimisa qui qui en est independant, et dont je m'etois avisé bien du temps avant que Mr. Bernoulli eut proposé son probleme de laplus courte discent, mais dont je jugéois que Mr. N: se devoit etre avisé aussi, lors qu'il avoit donné la figure de son Vaisseau dans les principes. Ainsy jay voulu dire, qu'il a fait Connoitre publiquement avant moy, qu'il posse doit cet Artifice, ce que ie ne pouvois point dire du Calcul des differences et des fluctions puisque j'en avois fait vort l'utilité publiquement avant la publication de ce Livre. Cet artifice particulier de Maximis et Minimis n'est <533v> point necessaire; quand il S'agit Simplement d'une grandeur (Car alors la Methode de Mr. Fermat perfectionnée par les nouveaux Calculs suffit) mais quand il S'agit de toute une figure qui doit faire le mieux un effect demande, il faut autre chose,

Mr. N. hazarde icy une Accusation mais qui va tomber Sur luy même; Il pretend que ce que jay écrit pour luy a Mr. Oldenbourg en 1677 est un deguisement de la methode de Mr. Barrow. mais comme Mr. N: avoue dans la page 253: et 254. de la premiere Edition de Ses Principes me ipsi (tunc) methodum communicasse a methodo ipsius vix abludentem præterquam in verborum et notarum formulis il s'ensuivra que sa Methode aussi n'est qu'un déquisement de celle de Mr. Barrow.

Ie Croy que luy et moy nous serons aisement quittes de cette accusation: car une infinité de gens liront le Livre de Mr. Barrow, sans y trouver notre Calcul, il est vray que feu Monsieur Tschirnhaus qui s'appereçut un peu tard de l'avantage de ce Calcule pretendoit qu'on pouvoit arriver atout cela par les methodes de Mr. Barrow Comme l'abbé Catelan, François pretendit que mème L'Analyze de Des Cartes sufffisoit pour toutes ces Choses, mais il etoit plus aisé de le dire que de le montrer,

Cependant si quelqun â profité de Mr. Barrow, ce Sera plustôt Mr. N. qui a etudié Sous luy que moy qui (autant que je puis m'en Souvenir,) n'ay veu les Livres de Mr. Barrow qu'a mon second Voyage d'Angleterre et ne les ay jamais Lus avec attention parce qu'en voyant le Livre je mapperçus que par la Consideration du Triangle Characteristique (dont les Cotez sont les Elements de L'Abstisse de L'ordonnée et de la Courbe) semblable a quelque Triangle assignable; j'etois venu comme en me jouant aux quadratures, Surfaces de solides dont Mr. Barrow avoit remply un Chapitre des plus considerables de ses Leçons, outre que je ne suis venu a mon Calcul des différences dans la Geometrie qu'apres en avoir vu — L'usage (mais moins Considerable) dans les nombres. Comme mes premieres Lettres dans le Commercium Epistolicum le peuvent insinuer. Il se peut que Mr. Barrow en ait plus sçu qu'il n'a dit dans son livre, et qu'il ait donne des Lumieres a Mr. N: que nous ne savons pas, Et si j'etois semblable a certains temeraires, Ie pourrois asseurer sur de simples soubsons sans autre fondement, <534r> que le Calcul des Fluctions de Mr. N: qu'el qu'il puisse etre, luy a eté enseigné par monsr. M. Barrow,

On peut bien juger que lors que jay parle en 1676 des problemes qui ne dependoient ny des Equations ny des Quadratures Iay voulu parler des Equations telles qu'on connoissoit alors dans le monde, c'est a dire des Equations de l'Analyse ordinaire Et on le peut juger de ce que j'adjoute les quadratures comme quelque choses de plus que ces Equations, mais les Equations differentielles vont au dela même des quadratures, et l'on voit bien que j'entendois même parlor des problemes qui vont a ces sortes d'equations inconnues alors au public, cette objection se trouvoit deja dans les remarques au Commercium, mais je n'avois point Crû que Mr. N ètoit capable de l'employer,

Ie juge par un endroit de ma lettre du 27 d'aoust 1676 (page 65. du Commercium Epistolicum) que je devois deja avoir alors l'ouverture du Calcul des differences, car j'y dis d'avoir resolu dabord par une certaine Analyse (Certa Analysi solvi) le probleme de Mr. Beane proposé a Mr. Des Cartes, cette Analyse n'etoit que cela, on le peut resoudre sans cela, et je Crois que Mr. Hugens et Mr. Barrow, l'auront donné au besoin comme beaucoup dautres Choses mais selon ma maniere de Noter ce n'est qu'un jeu, je trouve une petite faute, (dans cette page) il y a ludus naturæ au lieu de hujus naturæ mais cette faute ètoit ancienne, et se devoit deja trouver dans la Copie de ma lettre envoyée a Mr N. car il y repond (dans la letre du 24 d'october 1676. p. 86 du Commercium) Hos casus vix numeraverim interlusus naturæ Ie n'avois point entendu ce qu'il vouloit dire, mais a present je voi l'origine de la méprise,

Ie ne saurois dire aujourdhuy si j'ay remarqué le passage de Mr. Wallis ou il dit que Mr. N: savoit deja la methode des fluxions en 1666. Mais quand je l'aurois remarqué; je l'aurois laissé passer apparamment, étant fort porté, alors à croire Mr N: sur sa parole Mais son dernier procedé, m'a forcé d'étre plus circumspect a cet égard

Mr. N. dit que ie l'ay accusé d'etre plagiaire, Mais ou est ce que je lay fait, Ce sont adherans qui ont paru intenter cette accusation Contre moy, et il y a connivé, Ie ne say pas s'il adopte entierement ce qu'ils ont publié, mais ie conviens avec luy que la malice de <534v> celuy qui intente une telle accusation sans la prouver, le rend Coupable de Calomnie,

Il finit fa lettre en m'accusant d'étre L'aggresseur, et j'ay Commencé celle cy en prouvant le Contraire, Il sera fort aisé de vuider ce point preliminaire, Il y a eu du mesentendu, mais ce n'est pas ma faute. Au reste je suis avec Zele

Monsieur

Votre tres humble et tres obeissant

Serviteur,

Leibniz

Hanover ce 9 d'avril 1716

<537r>

Hannover ce 9 d'Avril 1716.[10]

P: S:

Mr L abbé Conti

Vous avès donné Monsieur, la Solution d'un probleme que les partisans de Mr. Newton, n'avoient point trouvée jusqu'icy. Car vous avès trouvé le moyen de me faire repondre, en m'envoyant une lettre de Mr. Newton luy même. Apres cela vous n'avies point besoin de me faire des exhortations la dessus. Si la question avoit été seulement lequel de nous deux, de Mr. Newton ou de moy a trouvé le premier le calcul en question; je ne m'en mettray point en peine. aussi est il difficile de decider ce que l'un ou l'autre peut avoir gardé in petto, et combien long temps. Mais un adherent de Mr. Newton a pretendu que je l'avois appris de luy; et depuis il a paru probable à qu'elques autres et même à Mr. Bernoulli que la maniere de calculer que Mr. Newton a publiée dans les oeuvres de Mr. Wallis a été fabriquée à l'imitation de mon calcul des differences deja publie.

Il n'y a pas la moindre trace ny ombre du calcul des differences ou fluxions dans toutes les anciennes lettres de Mr. Newton que jay vües: excepté dans celle qu'il a ècrite le 24 d'Octobre 1676, ou il n'en a parlé que par enigme (commerce p: 86) Et la solution de cet Enigme qu'il n'a donnée que dix Ans apres, dit quelque chose, mais elle ne dit pas tout ce qu'on pourroit demander. Cependant prevenu pour Mr. Newton j'ay eu autrefois la condescendence d'en parler, — Comme si elle disoit presque tout. Et c'est apres moi que d'autres en ont parlé de même. Mon honnêteté a été mal reconnue. Vous me dites, Monsieur, que Mr. Iones a publié une de mes Lettres à Mr. Newton, ayés la bonté de m'apprendre où.

<537v>

C'est aller un peu vite que de dire que mon probleme a été resolu fort aisement. Ie croi qu'il n'a point été resolu du tout, Car de donner quelques cas faciles, comme dans les Coniques et de se restraindre au cas de la soutangente, ete ce n'est pas faire grand chose, Mr. Bernoulli l'a resolu par une Methode generale. On fixe assez l'idée en disant qu'il S'agit generalement de toute suite de lignes qui ne different entre elles dans leur Construction que par les changemens d'une Seule droite constanante dans la ligne et changeant le ligne en ligne; Prenés telle ligne qu'il vous plaira, vous aurés d'abord par cette methode une Suitte d'une infinitè d'autres,

Ie m'etonne Monsieur, que vous dites qu'avant que de parler dela Philosophie de Mr. Newton, il faut convenir dela methode de philosopher. Est ce qu'il y a une autre Logique à Londres qu'à Hanover? quand on raisonne en bonne forme sur des faits bien averés, ou sur des Axiomes indubitables; on ne manque pas d'avoir raison. Si les Sentimens de Mr. Newton sont meilleurs qu'on n'a dit; tant mieux. Ie seray toujours bien aise de luy rendre justice.

Ie vois bien que vous n'avés pas encore eu le loisir Monfieur de toucher à rien de ce que j'avois eu l'honneur de vous écrire excepté ce qui regarde Mr. Newton, I'avois Sou traité d'approndre quelques nouvelles de Mr. Wren et de quelques autres excellens hommes. Mais je ne puis vous les demander qu'en grace. Et chacun est le màitre des graces qu'il veut faire. Cependant Si vous en apprenés quelque chose, ou quelques autres particularitès de doctrine, que vous voudriés bien me communiquer Comme vous me le faites esperer, je vous Supplie de ne me point remettre jusqu'au retour de Mr. le Baron Discau en Angleterre pour m'en faire part, puis que tous les Ordinaires me peuvent apporter l'honneur de vos Ordres: Et vous voyés que je n'attends pas le retour de Mr. Diseau de Pologne pour vous rèpondre.

<538r>

Ie crois de vous avoir dit, Monsieur, que le Regne de Charles 2 (au moins dans la premiere moitiè) me paroissoit le Siecle d'or des Sciences en Angleterre. Il Semble que je vous ay paru comme ce vieillard d'Horace, laudator temporis acti, et que vous avès voulu me redresser la dessus, en disant que les Sciences et les Arts fleurissent à present a Londres plus que jamais. Vous m'obligerés fort Si vous me le faites connoistre, car j'en Seray ravi. Mais des gens plus informés que moy, m'ont avoué que depuis quelque temps on S'etoit trop attaché à i ghiribizzi della politica, et aux controverses de religion. Ie voudrois voir revivre un Prince Robert dans les Mechaniques, un Chevalier Boyle dans la Chimie, un Mr. Hook dans les Observations de Microscope, un Mr. Sidenham ou Mr. Lyster dans celles de la Medecine, un Mr. Ray dans la Botanique, et ainsi des autres. Et quand Mr. Wren, Mr. Newton, Mr. Flamsted, Mr. Halley, Mr. Sloane Mr. Woodward et Mr. Wotton, ne seront plus, je ne say si les gens qui paroissent à present les pourront remplacer. Il semble que presque tous les Adherens de Mr. Newton, ne sont a present que des copistes, et que les plus aigres le sont le plus. Mais quand les presentes passions qui divisent la Nation, seront Appaisées j'espere que les esprits encouragés par le Roy et par le Prince (pour ne rien dire de la Princesse) reprendront leur ancien lustre.

Iay peur que ma lettre precedente Sur le Systeme de Monsr. Nigresoli vous aura donné aussi peu de Contentement, que le Systeme mêsme, puisque vous n'en dites rien d'avantage. Mais jay toujours voulu vous marquer mon Zele. vous voyés que le P: S: est pour vous, Monsieur, et la lettre est plustôt pour Mr. Newton à L'exemple de celle qu'il vous a ecrite.

[1] This Postscript is printed at the end of Mr. Leibniz's Fourth Paper as {illeg} Dr Clarke.

[2] From Leibnitz to Abb{é} Conti

[3] Printed in Des Maizeau's Recueil

[4] Printed in D{illeg}

[5] a C'est un Ecrit de 38 pages in 8, intitulé, Extrait du Livre intitule Commercium Epistolicum Collinij et aliorum de Analysi promota; publie par Ordre de la Societé Royale a l'occasion de la dispute elevée entre Mr Leibniz et le Dr Keill sur le Droit d'invention à la methode de Fluxions, par quelques uns appellés, Methode differentielle. On l'a inseré dans le Tome VII. du Iournal Literaire.

[6] b On la trouvera ci dessous à la fin des Remarques de Mr Newton sur la Lettre de Mr Leibniz a Mr l'Abbé Conti.

[7] c Ce Manuscrit intitulé de Analysi per Æquationes infinitas a été publié en 1711 par <526r> Mr. Iones, dans le Recueil qui a pour titre. Analysis per Quantitatum Series, Fluxion{es} ac Differentias: Cum Enumeratione Linearum tertij ordinis: in 4.

[8] Leibnitz to the Count De Bothmer {illeg}

[9] Letter from Leibnitz to Conti

[10] Leibnitzs Answer to Abbe Conti's Letter of March 1716 {illeg} 66

© 2025 The Newton Project

Professor Rob Iliffe
Director, AHRC Newton Papers Project

Scott Mandelbrote,
Fellow & Perne librarian, Peterhouse, Cambridge

Faculty of History, George Street, Oxford, OX1 2RL - newtonproject@history.ox.ac.uk

Privacy Statement

  • University of Oxford
  • Arts and Humanities Research Council
  • JISC